
PetaMem Scripting Environment - Manual

PetaMem GmbH
Radlická

CZ-150 00 Prague
support@petamem.com

As of: October 12, 2025

• Great care has been taken to en-
sure the accuracy of the features and
techniques presented in this publica-
tion. However, PetaMem accepts no
responsibility, and offers no warranty
whether expressed or implied, for the
accuracy of this publication.

• The information in this document
is subject to change without notice.
PetaMem makes no warranty of any
kind in regard to the contents of this

document, including, but not limited
to, any implied warranties of mer-
chantability quality or fitness for any
particular purpose. PetaMem shall not
be liable for errors contained in it or
for incidental or consequential dam-
ages concerning the furnishing, perfor-
mance or use of this document.

• All trademarks mentioned in this docu-
ment are the property of their respec-
tive owners.

PetaMem Copyright Notice

Copyright © 2002-2016 PetaMem, s.r.o. All rights reserved.

This work is intellectual property of PetaMem, s.r.o. It may not, in whole or in part, be
reproduced, published, distributed, performed, displayed, transmitted or incorporated in
compilations or derivativeworkswithout the expresswritten permission of PetaMem, s.r.o..

Contents

1 Deployment and Configuration 1

1.1 Deinstalling of a PM Project . 1

1.2 Upgrade and Downgrade . 2

1.2.1 By Installation . 2

1.2.2 By Explicit Switch . 3

1.2.3 By Implicit Switch . 4

2 About the PetaMem Scripting Environment 5

2.1 Conceptual Overview . 5

2.2 Paths and Directory Structure . 6

2.2.1 PMSE - Root . 7

2.2.2 PMSE - Binary . 7

2.2.3 Data - Library Structure . 7

2.3 PMSE Toolset Overview . 7

3 P_bsd: Basic Statistical Data 11

3.1 Reference . 11

3.2 Examples . 13

4 P_cct: Corpus Conversion Tool 15

4.1 Reference . 15

4.2 Examples . 16

5 P_cop: Co-occurrence Processor 19

5.1 Reference . 19

5.2 Examples . 20

I

6 P_csp: Comprehensive Statistics Processor 21

6.1 Reference . 21

6.2 Examples . 24

6.3 Q&A . 26

7 P_daf: Data Acquisition Framework 29

7.1 Reference . 29

7.2 How to Write an INI File . 30

7.3 Private Data and Personal INI . 31

7.4 Extended INI File . 31

7.5 Hooks . 32

7.6 Examples . 32

8 P_dmf: Data Mining Framework 35

8.1 Reference . 35

8.2 File Structure . 36

8.3 Input Formats . 39

8.4 Dependencies . 39

8.5 Input Texts, Encoding . 39

8.6 Wikimedia Processing . 40

8.6.1 Wikipedia Configuration File . 40

8.6.2 Further Processing . 42

8.7 Examples . 42

9 P_dmp: Distance Measures Processor 43

9.1 Reference . 43

9.2 Examples . 44

9.3 Q&A . 45

9.4 Distance Functions Characteristics . 45

10 P_dvf: Data Visualization Framework 51

10.1 Reference . 51

10.2 Examples . 54

II

11 P_gnp: Generic N-grams Processor 57

11.1 Reference . 57

11.2 Examples . 61

11.3 Q&A . 62

12 P_help: PMSE Helper 65

12.1 Reference . 65

12.2 Examples . 65

13 P_ici: Intelligent Command Iterator 67

13.1 Reference . 69

13.2 Examples . 71

14 P_rer: Regular Expression Replacer 73

14.1 Reference . 73

14.2 Examples . 75

15 P_trt: Text Repair Tool 77

15.1 Reference . 77

15.2 Examples . 78

16 P_vls: Variable Length Splitter 81

16.1 Reference . 82

16.2 Examples . 83

17 PMSE: Tutorial 85

17.1 Learning by Example . 85

17.2 Corpora . 85

17.2.1 C1 . 85

17.2.2 C2 . 85

17.2.3 C3 . 85

17.3 P_csp Interactive . 85

17.3.1 Basic Usage of –iact . 85

17.4 P_gnp Interactive . 88

17.5 Categorization of EMA Texts . 91

17.5.1 Fetch the Docs . 91

III

18 PMSE: Cookbook 93

18.0.1 Recipes for PMSE . 93

18.1 PMSE Crash Course . 93

18.2 Sentence Segmentation . 94

18.2.1 Basic Segmenter . 95

18.2.2 Complex Segmentator . 95

18.2.3 Advanced Segmenter for Czech . 96

18.3 Sub Word N-grams Extraction . 98

18.4 Probability of Neighbors . 100

18.5 Co-occurrences . 101

18.5.1 What is a Co-occurrence in Linguistics? . 101

18.5.2 Extract Co-occurrences . 102

18.5.3 Convert Text::NSP Bigrams to PMSE . 103

18.6 Text Categorization . 104

18.6.1 Brief Description of the Procedure . 104

18.6.2 Categorization.pl - Interface for TextCat . 105

18.7 PMSE Visualization . 106

18.7.1 Objects In PMSE . 106

18.7.2 Input from the Outer Space . 107

18.7.3 Binary Tree Visualization . 107

18.8 Visualization of Contingency Tables . 109

18.8.1 Interpretation of the Data Structure . 109

18.8.2 Methods of Visualization . 110

18.8.3 Distance Visualization . 111

18.8.4 FileStat Visualization . 111

18.9 N-grams Histogram Visualization . 111

18.9.1 Histogram Visualization Commands . 113

18.10Macros . 115

18.10.1MAK_1s1l . 115

18.10.2Further extensions . 117

Index 119

IV

List of Figures

2.1 PMSE top level overview . 6

3.1 P_bsd schematic overview . 12

5.1 P_cop schematic overview . 19

6.1 P_csp schematic overview . 22

6.2 Overview of the statistical processes . 25

7.1 P_daf schematic overview . 29

7.2 P_daf processes overview . 33

8.1 P_dmf schematic overview . 36

8.2 P_dmf directory structure . 37

9.1 P_dmp schematic overview . 43

10.1 P_dvf schematic overview . 52

11.1 P_gnp - overview of the processes . 58

13.1 P_ici schematic overview . 67

14.1 P_rer schematic overview . 73

15.1 P_trt schematic overview . 77

16.1 P_vls schematic overview . 81

18.1 Schematic overview of subgrams extraction . 98

18.2 The Canterbury Tales, and Other Poems by Geoffrey Chaucer - grammatical
co-occurrences for ’say’ (filtered input) . 103

18.3 Example of clusters visualized by GraphViz . 109

V

18.4 The Canterbury Tales, and Other Poems by Geoffrey Chaucer - three most fre-
quent bigrams . 112

18.5 The Canterbury Tales, and Other Poems by Geoffrey Chauce: most frequent
bigrams . 114

VI

List of Tables

8.1 .dmf.info example . 41

VII

VIII

Chapter 1

Deployment and Configuration

This chapter describes how to handle the installation(s) of PetaMem (PM) projects1 on your
server. That includes installation, deinstallation, upgrading, downgrading as well as infor-
mation about the current installation layout.

The central tool for installation and deinstallation purposes is the pm_install script which
you’ll find shipped with every installation media.

$./pm_install -h

will output (version numbers may vary)2 the usage information

This is the PetaMem 'pm_install' script rev. 747

Copyright (C) PetaMem, s.r.o. 2008-present

Usage: pm_install [options]

-cpus number of CPUs pm_install could use

(for performing testsuite)

-debug turns on debugging

-delete <proj>=<rev> remove the revision <rev> for <proj>

-disable <proj> deactivate the currently active revision

-help prints this usage information and exits

-list lists all installed revisions for PetaMem projects

-set <proj>=<rev> set the revision <rev> for <proj> as the currently

active and exit

-source=<path> set the source directory manually

-test perform only a test of environment

1.1 Deinstalling of a PM Project

If you want to disable the currently active revision of PM project, the command

1There exist 4 PM projects now - namely: PMLS, PMSE, PMLIB, PMWF.
2Also please be aware, that the version of the pm_install script is not necessarily the same as the version

of the PM project it will install on your server

1

1. Deployment and Configuration PMSE Manual

$ pm_install --disable <proj>

will perform effectively a ”deinstallation” of the project from your server in away that after
applying this command, usually youwon’t be able toworkwith PMSE. Please be aware, that
the software is not really deleted, but simply deactivated to prevent accidental data loss. If
all youwantedwas to switch between already installed versions, use the -set <proj>=<rev>

option (see 1.2, pg. 2).

Use this command with caution, because after this PMLS will not start on your server until
you again activate a version (either by installing a new one, or by issuing a pm_install -set

<proj>=<rev> command. Also, keep in mind that by just deactivating a PMLS version, it still
takes up space on your HD and with installing more and more versions you could run out
of space on your mass storage.

!!! Removal of a PM project version !!!

As -disable only performs a deactivation of a PM project version, and this further takes
up the space on your mass storage, you might at some point want to completely remove
an obsolete version of the project from your server. The -delete <proj>=<rev> option is
intended for this, as it will irrevocably remove the specified revision from disk. There are
some security measures and side effects:

• The script will refuse to remove the newest revision installed. So if you intend to
remove that, you have to do it manually from your OS shell.

• The user is presented with an interactive confirmation message before deletion.

• If the deleted version was the currently active one, the highest available version will
be made active.

1.2 Upgrade and Downgrade

Upgrading and downgrading of a PM project is intuitive and straightforward.

1.2.1 By Installation

Any version you install is being made the currently active version. So if you install a newer
version than what was before on your server, you have effectively upgraded a PM project.
If you installed an older version than what was active on your server before, you have
effectively downgraded a PM project.

Let’s look at some examples. Assume youhave done a fresh installation of Pmls, so you have
just one version installed. This version is also the active one and your /opt/PetaMem/PMSE
directory will look similar to this:

root@linux:/> ls -l /opt/PetaMem/PMSE

drwxr-xr-x 9 root root 4096 2015-09-20 16:31 home

lrwxrwxrwx 1 root root 13 2015-09-20 16:31 active -> rev-693

drwxr-xr-x 9 root root 4096 2015-09-20 16:31 rev-693

Assume you now obtain new installation media with a newer version. If you simply per-
formanew installation, the newversion gets installed in parallel to the old one andbecomes

2

PMSE Manual 1.2. Upgrade and Downgrade

automatically the active one. Your /opt/PetaMem/PMSE directory will then look similar to
this:

root@linux:/> ls -l /opt/PetaMem/PMSE

drwxr-xr-x 9 root root 4096 2015-09-20 16:31 home

lrwxrwxrwx 1 root root 13 2015-09-20 16:31 active -> rev-719

drwxr-xr-x 9 root root 4096 2015-09-20 16:31 rev-693

drwxr-xr-x 9 root root 4096 2015-10-25 15:25 rev-719

What has happened here is, that the original installation (rev-593) has remained in place,
the new installation (rev-619) has been installed in the PMSE_ROOT directory and has been
marked as active by putting the ”active” link to it. So you can always inspect the active Pmls
installation by changing to the directory.

The number of such parallel installations is only limited by the space on your hard disk.
You probably have noticed the home directory. This contains the home directories of all
named PMSE users and will neither change nor be removed when installing new versions
or upgrading/downgrading PMSE.

Although it may be obvious, we should mention explicitely, that ex factory higher revision
numbers correspond to newer versions of PMSE.

Note: PMSE project has NOT home directory.

1.2.2 By Explicit Switch

If you have already several versions of a PM project installed on your server andwould like
to switch from one to another, you can do so with the pm_install -set <proj>=<rev> (see
1.2.2, pg. 3) command, by simply providing the revision of the PM project version that is
going to be the active one.

Let’s assume, that after some time you have several revisions of Pmls installed on your
server and PMSE_ROOT looks something like this:

root@linux:/> ls -l /opt/PetaMem/PMSE

drwxr-xr-x 9 root root 4096 2015-09-20 16:31 home

lrwxrwxrwx 1 root root 13 2015-11-24 13:11 active -> rev-811

drwxr-xr-x 9 root root 4096 2015-09-20 16:31 rev-693

drwxr-xr-x 9 root root 4096 2015-10-25 15:25 rev-719

drwxr-xr-x 9 root root 4096 2015-11-24 13:11 rev-811

drwxr-xr-x 9 root root 4096 2013-12-21 14:16 rev-922

So there are four revisions, and the active one is 811. There is a newer one (922) and two
older revisions (693 and 719). If youwant now to upgrade from 811 to 922, you simply issue

$ pm_install -set PMLS=922

which will result in a new active link, effectively disabling rev-811 and enabling rev-922:

root@linux:/> ls -l /opt/PetaMem/PMSE

drwxr-xr-x 9 root root 4096 2015-09-20 16:31 home

lrwxrwxrwx 1 root root 13 2015-12-21 14:20 active -> rev-922

drwxr-xr-x 9 root root 4096 2015-09-20 16:31 rev-693

drwxr-xr-x 9 root root 4096 2015-10-25 15:25 rev-719

drwxr-xr-x 9 root root 4096 2015-11-24 13:11 rev-811

3

1. Deployment and Configuration PMSE Manual

drwxr-xr-x 9 root root 4096 2015-12-21 14:16 rev-922

You do not have to look up the /opt/PetaMem/PMSE directory to find out what versions are
installed and which one is active. Simply issue the command

$./pm_install -list

which will return either a message

System has no PMLS installation yet.

System has no PMSE installation yet.

System has no PMWF installation yet.

if there has been no Pmls, PMSE or PMWF installed on this system yet. Otherwise, there
will be a list of versions installed and the active one (if any) will be marked with a star. For
the above case the output would look like this:

Current PMSE installation layout:

593

619

711

* 822

1.2.3 By Implicit Switch

The only situation when the currently active version of a PM project gets switched with-
out explicit user interaction is when pm_install tries to maintain a sane (i.e. working) PM
project infrastructure on your server. Such a case has been mentioned in the disable/dein-
stallation section (see 1.1, pg. 1), when deleting a PM project revision - that happened also
to be the active revision - would render the system unusable.

pm_install then implicitely performs an upgrade by pointing the ”active” link to the newest
PM project version installed on your server, thus implicitely switching versions.

4

Chapter 2

About the PetaMem Scripting
Environment

The PMSE is a suite of programs and scripts that provide comprehensive functionality for
processing large amounts of textual data - so called corpora.

In case you are familiar with the UNIX tools sed1 and AWK2, you will already know not only
the alleged progenitors and inspiration for Perl, but also a large part of the concepts behind
batch text processing.

In case you are not be familiar with these tools, never mind: The PMSE will provide you
with powerful and concise text processing capabilities.

Let’s say you have one (or more) of the following tasks to do:

• translate all of your intranet documentation from one or more source languages to
several other target languages and periodically synchronize the translations.

• perform a grammar and spell check on thousands of documents in your company.

• retrieve specific information from internet sources, and to perform actions triggered
by the semantic information retrieved (data mining/information retrieval)

• perform various conversions (format, encoding), apply filters, categorize texts etc. on
textual data.

then PMSE is your tool and probably soon your friend.

2.1 Conceptual Overview

Image 2.1 on page 6 shows an abstract overview of the wide range of processes that can be
achieved by PMSE. Starting at the text retrieval, the process-chain continues with statistical
data-mining and ends with the display of information. Special position has the P_ici script,
which can start parallel processing and make working with PMSE scripts highly effective.

1see http://en.wikipedia.org/wiki/Sed
2see http://en.wikipedia.org/wiki/AWK_programming_language

5

2. About the PetaMem Scripting Environment PMSE Manual

ACQUISITION

CONVERSION

P_da_*

(PRE)PROCESSING

P_dm_*, P_dmf

MEASURE|ANALYSIS

P_cdp, P_gnp
P_rer, P_trt

(POST)PROCESSING

P_bsd, P_gnp, P_dmp
P_rer, P_trt

VISUALIZATION

P_dvf, P_cdp, P_dm_*
P_dmp, P_dvf, P_gnp

P_rer, P_trt

HELPERS/META

P_dvf

P_fdt, P_ici
P_vls

Figure 2.1: PMSE top level overview

2.2 Paths and Directory Structure

This section describes predeclared paths and presumed directory structure related to usage
of PMSE. The paths are set in the environment by PetaMem configuration files.

6

PMSE Manual 2.3. PMSE Toolset Overview

2.2.1 PMSE - Root

The root of PMSE is set to be the PMSE/active/ directory. It can be accessed in bash as:

$ cd $PMSE_ROOT

2.2.2 PMSE - Binary

The scripts described in the following section 2.3 are placed in $PMSE_ROOT/bin path which
can be accessed from bash as a $PMSE_BIN variable.

$ cd $PMSE_BIN

2.2.3 Data - Library Structure

PMSE is designed to process texts in order to extract statistical data related to language. As
wewant PMSE to be a processor ofmultilingual data, we assume a big variability in sources
of the data.

We adopted a specific name-space strategy to handle multilingual data and keep it synop-
tic. The resources are placed in /data/library/ directory, which can be (in default setting)
accessed in bash as

$ cd $PMCORP_ROOT

command. For information about conversion and manipulation of source files see P_dmf
section 8.

2.3 PMSE Toolset Overview

Under the PMSE_ROOT/bin directory you will find several scripts that provide generic batch
processing functionality and macros which alleviate the job of large scale text data pro-
cessing. The naming scheme of the central PMSE scripts is P_xxx, where xxx is a mnemonic
for a more verbatim explanation of the functionality of the specific command. In the same
directory, a file README.txt will give you an overview of the scripts available: The most
important scripts to become familiar with are the following:

P_bsd Basic Statistical Data
Get basic statistical data about a corpus

P_cop Co-occurrences Processor
Extract co-occurrences for given target from a list of bigrams

P_cct Corpus Conversion Tool
Convert corpora and tagsets

P_csp Comprehensive Statistics Processor
is the core statistical processing script in PMSE. It provides a wide range of statistical
functions for text processing.

P_dmp Distance Measures Processor
Computes distance measures for N-gram pairs

7

2. About the PetaMem Scripting Environment PMSE Manual

P_dmf Data Mining Framework
Process files in numerous formats into a plain text automatically

P_dvf Data Visualization Framework
Dump and convert data of various formats (Storable, YAML, ...)

P_fdt File Distribution Tool
Distribute given files to a set of containers of given size

P_gnp Generic N-grams Processor
N-grams processing, calculates various N-grams measurements, creating of contin-
gency tables

P_help PMSE Helper
General help for PMSE environment

P_ici Intelligent Command Iterator
Script for iterating and parallelization of other scripts

P_rer Regular Expression Replacer
The regular expression replacement engine script

P_trt Text Repair Tool
Manipulate with a text on more abstract level

P_vls Variable Length Splitter
Specify a part of text (part of word list) and cut it out

Every script documents its commandline options via <cmd> --help. Also, as all of the scripts
are an integral part of the PMSE infrastructure, they share several common options youwill
see in the help texts:

This is a PMSE script. Generic PMSE options are:

Options:

--cpu <n>

set the number of CPUs manually. This is recognized

automatically and influences the number of parallel started

processes (if possible). With this you can override the autodetect.

--debug <n>

Will enable the printout of debug messages. The verbosity threshold

for the debug messages is handled in the same as for the regular

messages. (see "--report").

--dry

dry run facility. Do not actually execute the commands

--help

print the script specific help and the general PMSE help

--info

information about the current environment, such as arguments,

detected values, etc. When this parameter is detected the

information delivered is current i.e. parameters AFTER this

parameter are not considered yet. If you want the final

8

PMSE Manual 2.3. PMSE Toolset Overview

information for all parameters, place this parameter last

on the command line

--report <n>

by default all scripts have no output. If you'd like to know more

about what's going on, set this option. Setting <n> higher will

produce more verbose output.

--version

prints the version number of the script, and of PMSE, and exits.

Please note that command line parameter processing is done via the Perl module Getopt::-
Long3 which implies some advanced and tolerant handling. For instance, it doesn’t matter
whether you provide -h or -help or --help as long as your option name is unambiguous.

There exists also option specific help available for options that require one or more input
parameters from a list. This so called self-documenting helpmay be invokedwith question-
mark in the position of a argument for given option. In POD, it is marked as:

--option <type|?>

type may be one of following:

A

B

C

...

All the most important scripts can be run in interactive mode when --iact option is used.
In which case the user will be asked to complete options interactively. After execution, he
can find the effective CLI in pmse_env.

The next sections will cover all PMSE scripts. The structure of the documentation is the
same for every script: An introductory and general text, the command reference and ex-
amples.

While the examples are specific to the tool described, they often cover useful information
about generic options and their usage, pitfalls, as well as tips and tricks. It is therefore
advisable to look through all of them.

After this, the PMSE Tutorial and PMSE Cookbook chapters cover bigger use cases for PMSE.

3see http://search.cpan.org/perldoc?Getopt::Long

9

2. About the PetaMem Scripting Environment PMSE Manual

10

Chapter 3

P_bsd: Basic Statistical Data

P_bsd provides a basic statistical overview of a text/corpus. It is analogue to the Unix-like
program wc, but it provides more options and more detailed output.

You can adjust the token definition by the --delimiter and --ifilter options. See section 6
for detailed usage of both of these options.

This script comes in handy, when you need to compare files without scanning them line by
line. E.g.:The average number of characters per token or the type-token ratio could help
you to detect strangeness in your text.

$ P_bsd -?

3.1 Reference

PMSEBasic StatisticalData Basic Statistical Data script gives an essential overviewabout
the corpus.

USAGE P_bsd [options] file

At least one file (corpus) must be given.

The result is a Perl data structure stored in Storable format in overview file in directory
specified by --out option.

OPTIONS

–delimiter <regex>

The delimiter has the form of Perl regular expression. It enables the tokenizer to dis-
sect text into discrete tokens. If the user doesn’t set his own value, the default from
the PMLIB tokenizer is taken.

–ifilter [<type>=<regex>|?]*

This option may be provided multiple times (with different content for type of course)
to define various filters, that are inserted at specific places in the data stream during
processing. Valid values for ifilter <type> are:

11

3. P_bsd: Basic Statistical Data PMSE Manual

raw text tokenization storableifilter

punctuation
frequency

computation

bytes
computation

digits
frequency

computation

types/tokens
ratio

computation

average count
of characters

per token
computation

tokens count
computation

digits
probability

computation

characters
total count

computation

types count
computation

punctuation
probability

computation

whitespace
frequency

computation

whitespace
probability

computation

Figure 3.1: P_bsd schematic overview

+token tokenizing step: matching tokens will pass

-token tokenizing step: matching tokens will be blocked

12

PMSE Manual 3.2. Examples

<regex> may be any regular expression. Please take care to quote the whole expres-
sion, to prevent the shell modifying it. For example: ’<filter>=<regex>’.

–in <filename>

Input file.

–out <directoryname>

Defines the output directory.

3.2 Examples

Basic information retrieval

$ P_bsd --out STDOUT --in text.txt

Tokenization will be provided by the default PMLIB tokenizer. The script will produce a
hash structure with information about text specified in the --in option. This hash will be
printed on STDOUT:

{

'distribution_punctuation_freq' => 10055,

'bytes' => 297858,

'distribution_number_freq' => 264,

'types_tokens_ratio' => '0.0479324517972524',

'average_number_of_token_chars' => '2.55586541844361',

'tokens_count' => 116539,

'distribution_number_prob' => '0.000886328384666519',

'chars' => 297858,

'types_count' => 5586,

'distribution_punctuation_prob' => '0.0337576966205373',

'distribution_whitespace_freq' => 60847,

'distribution_whitespace_prob' => '0.204281906143196'

}

(waiting for ENTER)

The abbreviations mentioned above mean:

• average_number_of_token_chars average number of characters per token

• bytes length in bytes

• chars length in characters

• distribution_number_freq frequency of digits in the text

• distribution_number_prob probability of digit occurrence

• distribution_punctuation_freq frequency of punctuation marks

• distribution_punctuation_prob probability of punctuation marks occurrence

• distribution_whitespace_freq frequency of whitespace

• distribution_whitespace_prob probability of whitespace occurrence

• tokens_count count of the tokens in the given text

13

3. P_bsd: Basic Statistical Data PMSE Manual

• types_count count of the the types in the given text

• types_tokens_ratio type-token ratio

14

Chapter 4

P_cct: Corpus Conversion Tool

P_cct provides conversion of corpora from source format into Perl data structure. It also
converts tagsets into Pmts - the PetaMem Tag Set. Conversion mechanism is implemented
in PMSE::Corpus module (and all subsequent modules in given namespace). Conversion of
tagsets takes place in PMLIB::Tag namespace. Architecture of corpus and tagset conversion
is completely modular and may be extended easily.

$ P_cct -?

4.1 Reference

PMSE Corpus Converter Tool

USAGE P_cct [options]

P_cct converts corpus from original to specified form.

OPTIONS

–convert <void|direction|?>

Execute conversion. Maybe calledwithout parameter, with specific direction andwith
?. If no parameter was specified, default conversion (original tagset 2 pmts) will be
used. List of available conversions for given corpus may be listed with ?.

–corpus <corpus name|?>

Specify name of corpus you want to convert. Currently are supported:

BNC

Penn

OANC

WikiCorpus

CNK

PDT

The complete list of corpora may be listed with ? as a parameter.

15

4. P_cct: Corpus Conversion Tool PMSE Manual

–in <filename|directory>

Input files.

Also a directory may be specified, in that case specify also mask.

–mask <regex>

Positive filter for files. Default is:

\.txt\z

All files in input directory matching this regexp will be processed.

–out <directoryname> or <STDOUT>

Defines the output directory. If not specified, Data will be stored in CWD. Output file
will have the same name as original file.

4.2 Examples

List available conversions

$ P_cct --corpus ?

Basic usage

$ P_cct --in OANC --out STDOUT --convert

Will find all files in OANC directory and will convert them into internal data structure.
Penn-like tagset will be converted to Pmts.

Data conversion

Consider a conversion of OANC1 corpus from previous example. Source files of OANC are
stored in text format. A sample of such source is displayed below:2

"/'' But/CC you/PRP 're/VBP the/DT only/JJ

person/NN who/WP reads/VBZ it/PRP ./. "/'' That/DT may/MD be/VB

true/JJ ./. But/CC 15/CD ,/, 000/CD copies/NNS were/VBD printed/VBN ./.

Resulting data structure will look like this:

[

[

[", Oq],

[That, Dg--s],

[may, Voip],

[be, Van],

[true, Afp],

[., Ot],

],

1http://www.americannationalcorpus.org/
2Actually it is a segment of last paragraph of file ArticleIP_2572.txt.

16

PMSE Manual 4.2. Examples

[

[But, Cc],

[15, Mc],

[,, Oy],

[000, Mc],

[copies, Nc-p],

[were, Vais],

[printed, Vmps],

[., Ot],

],

],

First level of braces encloseswhole converted file, second encloses sentences and the lowest
level holds 2-tuples - word and its tag.

17

4. P_cct: Corpus Conversion Tool PMSE Manual

18

Chapter 5

P_cop: Co-occurrence Processor

P_cop extracts co-occurrences for given target from a list of bigrams. The list must be stored
in a Storable format. See section 18.5 for detailed instructions and explanation of the con-
cept of co-occurrences.

Level of co-occurrences is specified via the --level option.

The target (a word with which co-occurs other words) may be specified as a regular expres-
sion or a literal. The output is an PMSE object, that can be easily visualized by P_dvf.

PMSEuses theGraphViz software1 to display the relationbetween the target ant co-occurring
words.

list of bigrams

extract n order co-occurrences
for target

storable

Figure 5.1: P_cop schematic overview

$ P_cop -?

5.1 Reference

PMSE Co-occurrence Processor

1http://www.graphviz.org/

19

5. P_cop: Co-occurrence Processor PMSE Manual

USAGE P_cop [OPTIONS]

P_cop extracts co-occurrences from bigrams.

OPTIONS

–delimiter <regexp>

Defines delimiter of tokens in the n-gram. Default is white-space.

–in <filename>

Defines the input file.

It must be a Storable file. Input file must contain bigrams in the format:

<bigram> => <value>

–level <n>

Level of co-occurrences. Assume this example:

target: A

lvl 1: A -> B (a co-occurrs with B)

lvl 2: B -> C

lvl 3: C -> D

Co-occurrence A -> D is of order 3. The ”deeper” level you go the more co-occurrences
you get - and result may become messy. Filtering of input bigrams (and tokens) with
high frequency may help here.

Default value of level is 3.

–out <filename>

Defines the name of the output file. The output is a PMSE::Visualize object stored in
Storable format.

–query <type>=<target>|?

Type may be:

literal

regexp

It is necessary to specify a word / expression (target) for that we want to extract co-
occurring words. The target may be specified as a literal string or as a regular expres-
sion. When a literal string is specified, co-occurrences will be extracted exactly for
this string. Regular expression may match more words.

5.2 Examples

$ P_cop --in bigrams.sbl --out coocs --query 'regex=.+ship' --level 2

20

Chapter 6

P_csp: Comprehensive Statistics
Processor

P_csp is a tool designed for extraction of tokens and their statistical characteristics, like
basic count, frequency or probability. It is also capable to compute histograms of values for
given set of tokens.

$ P_csp -?

6.1 Reference

PMSE Comprehensive Statistics Processor

USAGE P_csp [options]

P_csp is the core statistical processing script in PMSE. It provides a wide range of statistical
functions for text processing.

The process workflow of P_csp is as follows:

text(s)-> tokenization -> statistics -> metrics -> output

Throughout this processing chain, various hooks are deployed and support extensive data
mangling (filters, transformations etc.).

OPTIONS

–action [<action> | ?]*

You can give one or more named actions as a space-separated list to define what pro-
cessing the script shall perform on the input files. Valid values for <action> are:

utcount count unique tokens

utfreq compute the token frequencies

utprob compute the token probabilities

–bulk <file>

21

6. P_csp: Comprehensive Statistics Processor PMSE Manual

raw text

tokenization

storable

ifilter

process

ofilter

statistical computation

Figure 6.1: P_csp schematic overview

With option –bulk you can define an INI file, which can be used for histogram / hash
filtering and tokens processing. The INI file has a structure of ’[section]’ and name=value,
heredoc style can also be used. ’Section’ is name of the procedure (process / ofilter),
’name’ is the name of the hook (the same as in --process and --ofilter). ’Value’ stores
code, which will be executed on the result of the action.

–delimiter <regex>

Delimiter has the form of a Perl regular expression. It enables the tokenizer to dissect
text into discrete tokens. If the user doesn’t set his own value, the default delimiter
from the PMLIB tokenizer is taken.

–histogram [<action>=<file> | ?]

22

PMSE Manual 6.1. Reference

We can count a distribution (histogram) for the result of each ’action’. Histogram is
stored in the file ’file’. Actions could be:

utcount histogram stores distribution of tokens occurrences

utfreq histogram stores distribution of tokens frequencies

utprob histogram stores distribution of tokens probabilities

’File’ is in Perl Storable format.

–ifilter [<type>=<regex> | ?]*

This option may be provided multiple times (with different content for type of course)
to define various filters, that are inserted at specific places during data stream pro-
cessing. Valid values for ifilter <type> are:

+token tokenizing step: matching tokens will pass

-token tokenizing step: matching tokens will be blocked

+utcount unique tokens counting step: matching tokens will pass

-utcount unique tokens counting step:

matching tokens will be blocked

+utfreq unique tokens frequencies step: matching tokens will pass

-utfreq unique tokens frequencies step:

matching tokens will be blocked

+utprob unique tokens probabilities step: matching tokens will pass

-utprob unique tokens probabilities step:

matching tokens will be blocked

<regex> may be any regular expression. Please take care to quote the whole expres-
sion, like ’<filter>=<regex>’, to prevent the shell modifying it.

–in <filename>

Input file.

–ofilter [<hook>=<code> | ?]

Ofilter can be used for result of each action, which is always a hash, thus with <code>
wecanaffect both keys andvalues. Hookdenotes the specific part of the processwhere
the ofilter is applied. Hook can be:

utcount filter result of action utcount

utfreq filter result of action utfreq

utprob filter result of action utprob

_hist filter result before histogram is made

histogram filter hash with histogram values

(note: keys and values are both numeric)

Code could have the form of $key =~ m{.*}xmsg or $value >=< number. You can also in-
sert the name of an INI file via the --bulk option.

–out <directoryname>

Defines the output directory.

–process [<hook>=<subst> | ?]*

<subst> is a Perl substitution operator: s{pattern}{replacement}flags, whereas ”pat-
tern” is a regular expression, ”replacement” may be a string or even Perl code if the

23

6. P_csp: Comprehensive Statistics Processor PMSE Manual

”e” flag is given. Further info see e.g. http://perldoc.perl.org

<hook>may be one of the following:

_utcount pre 'utcount' hook

utcount_ post 'utcount' pre-set building

_utfreq pre 'utfreq' set building

utfreq_ post 'utfreq' set building

_utprob pre 'utprob' set building

utprob_ post 'utprob' set building

6.2 Examples

Basic usage

$ P_csp --action utcount --out tokens --in corpus.txt

will count all unique tokens (types) from the ”corpus.txt” file and the output will be saved in
the directory called ”tokens”. The name of the output file is created from the combination
of the --action function, or functions, which were called on the commandline. In this case,
the path to the output file will be: ”tokens/utcount”.

To familiarize yourself with the dependencies of various processing options, please see fig-
ure 6.2.

Get frequencies

$ P_csp --action utfreq --ifilter '+token=\A\p{Alpha}+\p{Digit}* \z' \

> --insort alpha --out cfreq --in corpus.txt

will calculate the frequencies of alpha-numeric character tokens from the input file ”cor-
pus.txt”. The contents of the output file will be sorted by ascending alphabetical order. The
output, in this case, will be stored in the ”cfreq/utfreq” file.

Unique count, frequency, probability, lower casing

$ P_csp --action utcount utfreq utprob --ifilter '+token=\D+' \

> --delimiter '\s+' --process 's{\A(.+)\z}{lc($1)}xmse' \

> --out corpus_info --in corpus.txt

will count unique tokens, their frequency and probability. Tokens (in the original text) are
split by whitespace. (--delimiter).

Only non-digits tokens will pass (--ifilter). All tokens will be lowercase (--process). The
3 output files: utcount, utfreq, utprob will be stored in the corpus_info directory.

The output of P_csp is a Perl data structure, further processing can be done by utilizing the
P_dvf script.

24

PMSE Manual 6.2. Examples

tokens

process
utcount

process
utfreq

process
utprob

unique tokens
count

unique tokens
frequency

uinque tokens
probability

statistical
computation

utcount
Storable

utfreq
Storable

utprob
Storable

histogram
utcount
Storable

histogram
utcount
Storable

histogram
utcount
Storable

Figure 6.2: Overview of the statistical processes

25

6. P_csp: Comprehensive Statistics Processor PMSE Manual

How to create a bulk file?

The bulk file loaded into P_csp needs to comply with the INI file format: it must have the
[section] and ’name=value’ structure. Each closing heredoc terminator END must be fol-
lowed by a newline.

[process]

_utcount=s{\d+}{NUMBER}xms

_utfreq=s{(A-Z)}{lc$1}xmse

utprob_=s{\bY.+\b}{}xmsi

[ofilter]

_ofilter=<<END

$key =~ m{\pP+}xmsg

$key !~ m{\w}xmsg && $value < 20

END

ofilter_=<<END

$value = 25|32|33

$value > 1500

END

Each ’[section]’ denotes the type of change, where ’name’ is a hook, as in --process or
--ofilter options. The ’value’ contains code, that will be evaled during processing. You
can use the heredoc style to include several lines of code and transformations. A bulk file
could be used for multiple filtering and tokens processing.

Creating a histogram

$ P_csp --action utcount --out c_utcount \

> --histogram 'utcount=histogram' --in corpus.txt

Will calculate the histogram (distribution of occurrences for tokens), the histogram output
will be stored in the file ’histogram’.

Creating a histogram and using ofilter

$ P_csp --action utcount --out c_utcount \

> --histogram 'utcount=histogram' --ofilter '_hist=$value > 20' --in corpus.txt

This is the same as the example above except that tokens which occur more than 20 times
will be deleted. Deleted tokens won’t be counted in the histogram. You can also use the
--bulk option to apply multiple conditions, e.g.: you can delete various words, word forms
and tokens represented by classes of regular expressions etc.

6.3 Q&A

Something is wrong while P_csp runs on commandline.

If you see this error, it is most probably caused by erroneous shell expansion. You will
need to quote your regex \b(\w).+\pP or special characters *. Or you can escape them, by
changing * to *.

26

PMSE Manual 6.3. Q&A

Pay especial attention when using the following characters: []<>()*|

Output file is not readable

The output of P_csp is saved in Storable format, which may need to be converted before
being read by another script, perhaps using P_dvf or some other converter.

27

6. P_csp: Comprehensive Statistics Processor PMSE Manual

28

Chapter 7

P_daf: Data Acquisition Framework

P_daf is a framework for acquisition of various data. The rules (source, destination) for the
acquisition are not dependent on P_daf. They are specified in a separate INI file.

That allows you to write your own INI files and make your data acquisition automated.

INI files are placed in a $PMSE_ROOT/cfg/daf.d. directory. But you can specify alternative path
by the --ini option.

INI file

load instructions

download the data

place data in a filesystem

Figure 7.1: P_daf schematic overview

$ P_daf -?

7.1 Reference

PMSE Data Acquisition Framework

29

7. P_daf: Data Acquisition Framework PMSE Manual

USAGE P_daf [OPTIONS]

P_daf downloads data from the web.

OPTIONS

–fetch [<PROJECT> | ?]

Specify project(s) to fetch. ? will give you a list of available projects. If you store INI
files in other than default directories, you should specify them in --ini option.

–ini [<DIR>,<FILE>]

Specify path(s) to INI file(s) or dir(s) which contain them. default is:

$PMSE_ROOT/cfg/daf.d

7.2 How to Write an INI File

First, let’s take a look on a real one. The following INI file was used in PMSE to get list of
geographic names:

[global]

lastfetch =

interval = 6 months

name = geonames

[geonames]

threads = 1

URL = http://download.geonames.org/export/dump

match = (?<file>(allCountries|alternateNames).zip)

get = "%URL%/$file"

store = "$ENV{PMCORP_ROOT}/m/u/l/original/geonames/$file"

The INI file has two sections: global and geonames.1 Three parameters take place in the
global section. Lastfetchmay contain the date of the last download; this parameter is oblig-
atory. Interval is the time period between downloads. Name is the name of the project, that
you call from P_daf.

The section geonames contains several parameters:

threads specifies the number of processes

URL a web adress containing a hyperlink(s) to the data

match a regular expression that match the hyperlink(s) aiming on the data

get specifies the target (matched hyperlink) to download

store specifies the place in a filesystem, where to store the data

As you can see by the get parameter, templating can be used. The value of a previously
defined parameter is accessed as a %<name of parameter>% template.

1The section name is always enclosed by square brackets.

30

PMSE Manual 7.3. Private Data and Personal INI

The $file variable is specified as a named backreference (captured group). in match pa-
rameter.2

7.3 Private Data and Personal INI

Some of your projects may request login. In that case we recommend you to add 3 lines to
the global section of the INI:

login = 1 # this section will tell P_daf

that login info is required

password = XYZZ # here you will store your password

username = NN # and here username

Note: if you will specify login = 1 and won’t specify password or username, P_daf will skip
your INI and give you some warning.

In the case you don’t want to store your personal credentials in common directory, youmay
create a directory containing your personal INI in your home.3 Even if there exists an INI
of the same name in the common directory, P_daf will prefer yours. You have just to add
your private directory to the --ini option:

look for INIs in private and default directory

P_daf --fetch <private.ini> --ini <def.path> , <pers.path>

7.4 Extended INI File

The following INI file4 shows how to fetch the newest data from aweb site offeringmultiple
targets sorted by a date. The base URL is an index of files to download.

[global]

lastfetch =

interval = 6 months

name = openstreetmap

[whole_planet]

BASE = http://ftp5.gwdg.de/pub/misc/openstreetmap/planet.openstreetmap.org/

planet/2013/

url = %BASE%

prehook_start =<<PREHOOK_START

our $newest = 0;

1. do we already have whole planet map? _NO_? then go on

if (!glob("$ENV{PMCORP_ROOT}/m/u/l/original/openstreetmap/planet*")){

here we have to find the newest date

while ($source =~ m{>(?<file>planet-(?<date>\d{6}).osm.bz2)<}xmsg){

if ($+{date} > $newest){

2http://perldoc.perl.org/perlretut.html#Named-backreferences
3P_daf checks all paths to INIs and if there are duplicate INI names, it will prefer path containing your home

address.
4The URL adress in the BASE (currently in 2 lines) linemust be placed on one line. We broke the line because

of readability.

31

7. P_daf: Data Acquisition Framework PMSE Manual

$newest = $+{date};

}

}

}

PREHOOK_START

match = \A # exactly one match

get = $newest ? "%BASE%/planet-$newest.osm.bz2" : undef

store = "$ENV{PMCORP_ROOT}/m/u/l/original/openstreetmap/$file"

The prehook_start parameter contains a Perl code (in the heredoc format) which checks the
input (BASE) file (web site) and searches for the latest date.

Hyperlinks aiming to the target files are matched with the

m{>(?<file>planet-(?<date>\d{6}).osm.bz2)<}xmsg

regexp. We have a named backreference called $file, which holds the name of each target.
A date of origin is a part of the name. As we want to fetch only the newest file, we make a
simply comparsion of all dates in the while loop. The latest date is assigned to the $newest

variable.

The variable called $source holds the content of the BASE.

Thematch section contains a \A anchor, that cuases only one match on the given web site.

The get parameter contains a condition we can read as: ”do we have a defined variable
$newest ? YES - fetch the newest file, NO - do nothing”.

7.5 Hooks

In previous section, we have mentioned prehook_start parameter. The concept of hook is
to provide a ’raw’ Perl code that will be executed in a specific place (time) of the process of
acquirement of the data. There are available four hooks, what makes the DAF config file
pretty configurable. There exist 2 pre-hooks and 2 post-hooks. They are called:

prehook_start # process BASE file -before spec. targets

prehook # before a specific target is downloaded

posthook # after a specific target is downloaded

posthook_final # after all downloads are completed

Thewhole process is described on figure 7.5. Phases of the data acqusition are visualized as
box-like nodes. Red labels stand for hooks. Get and store parameters are similar to hooks,
because their content may be modified by a Perl code.

With get you may modify the specific download link, with store the path, where do you
want to store the data.

7.6 Examples

$ P_daf --fetch geonames

32

PMSE Manual 7.6. Examples

1 .. n processes

BASE URL
content

link
to a specific target

 prehook_start / get

download the target

 prehook

store the content
of a target

 store

posthook

posthook_final

Figure 7.2: P_daf processes overview

33

7. P_daf: Data Acquisition Framework PMSE Manual

34

Chapter 8

P_dmf: Data Mining Framework

The P_dmf tool allows to convert numerous input formats to plain text. It has also some ex-
tended features likeWikimedia projetcs processing. P_dmf is designed toworkwith specific
file structure, which is described below.

$ P_dmf -?

8.1 Reference

SYNOPSIS P_dmf [options]

OPTIONS

–base <base path>

Base path of your corpus data. Default is ’/data/library’.

–conv <all|?>

This option will list available converters. The resulting list differs according to input
option:

all all available modules in PMLIB

? converters installed in the system

–in <file|’glob’>+

Defines the input source file or glob. Option can be given multiple times for multiple
input source files. If you define a glob, please be aware to put it in single quotes to
prevent shell expansion.

For this file you could also provide config file .dmf.info. You should put this file into
one of parent dir. The closest one is applied.

–out <dir>

In case only one input dir is specified, P_dmf can store results into specified directory.

35

8. P_dmf: Data Mining Framework PMSE Manual

original
document

unpack

convert/process

check encoding
recode

plain text

Figure 8.1: P_dmf schematic overview

8.2 File Structure

Consider a situation, when the amount of the textual documents is dynamically changing.
In the filesystem exist old, yet processed documents and also come new - in various formats,
encoding etc. PMSE adopted a specific strategy, how to handle this.

PMSE uses by default the path /data/library/ as document root to store any processed doc-
uments. This can be changed by the environment variable PMCORP_ROOT.

The environment of PMSE is extensivelymultilingual, therefore it offers a very generic way
to store data for numerous languages under this document root. Each language is repre-
sented as a directory trie1. The name of the trie is derived from the appropriate iso-639-32

code of the language.

The path for documents in English is therefore:

/data/library/e/n/g/

Original documents (incoming, raw data) are meant to be stored in a subdirectory called
original and processed documents in a subdirectory derived. The resulting skeleton struc-
ture looks like this

1http://en.wikipedia.org/wiki/Trie
2http://en.wikipedia.org/wiki/ISO_639-3

36

PMSE Manual 8.2. File Structure

data

└── library

├── c

│ └── e

│ └── s

│ ├── derived

│ └── original

├── d

│ └── e

│ └── u

│ ├── derived

│ └── original

└── e

└── n

└── g

├── derived

└── original

Where we have only presented the Czech (ces), German, (deu) and English (eng) tries. In
productive environments, PMSE can handle all of the 7000+ languages defined in iso639-3
this way.

If your environment has to cope with lots of languages, in order to be able to quickly visit
the respective language on the command line, there is a shell alias go defined. This allows
you to do

$ go ell

And you end up in the directory /data/library/e/l/l/original/ (Greek original data).

In the original directories you can place your raw data files as you desire. because the
derived directory has to maintain a quasi-mirror image of the original data structure, its
stucture is slightly more complex, because one source file in original may correspond to
several target files in derived (think e.g. about .zip archives in the original dir).

original derived

copy directory

structure

Figure 8.2: P_dmf directory structure

P_dmf will create similar structure in derived directory, but also will (eventually after sev-
eral steps) convert the original document to a plain text encoded in UTF-8. The resulting
text is placed in a directory called lvl.last.

Assume we have in the german original directory several yearly archives of PDF texts

$ ls /data/library/d/e/u/original/journal

2004.tbz2 2005.tbz2 2006.tbz2 2007.tbz2 2008.tbz2 2009.tbz2

2010.tbz2 2011.tbz2 2012.tbz2 2013.tbz2 2014.tbz2

37

8. P_dmf: Data Mining Framework PMSE Manual

where every of these archives contains several PDF files:

$ tar txf 2006.tbz2

2006/

2006/January.pdf

2006/February.pdf

2006/March.pdf

...

Then, after this script has processed these files, we will end up in the derived directory
structure with something like this:

├── 2004.tbz2

│ ├── lvl.1

│ │ └── 2004.tbz2

│ │ └── 2004.tar.bz2

│ ├── lvl.2

│ │ └── 2004.tbz2

│ │ └── 2004.tar.bz2

│ │ └── 2004.tar.bz2

│ │ ├── 2004.tar

│ │ └── 2004.tar.gz

│ ├── lvl.3

│ │ └── 2004.tbz2

│ │ └── 2004.tar.bz2

│ │ └── 2004.tar.bz2

│ │ └── 2004.tar

│ │ └── 2004

│ │ ├── January.pdf

│ │ ├── February.pdf

│ │ ├── March.pdf

...

│ ├── lvl.4

│ │ └── 2004.tbz2

│ │ └── 2004.tar.bz2

│ │ └── 2004.tar.bz2

│ │ └── 2004.tar

│ │ └── 2004

│ │ ├── January.pdf

│ │ │ └── January.txt

│ │ ├── February.pdf

│ │ │ └── February.txt

│ │ ├── March.pdf

│ │ │ └── March.txt

...

These January.txt, February.txt, March.txt files are what we were looking for.

No matter how many levels of conversion are required to end up with the desired target
text3, there will always be a lvl.last directory containing symbolic links to the final texts.

3if possible at all, as you may have placed e.g. photos in the original directory

38

PMSE Manual 8.3. Input Formats

Which means that if you are not interested in the intermediary data created during the
conversion process, you can go to or point further processing tools to this directory.

8.3 Input Formats

P_dmf is able to handle several formats to convert input data into txt:

compressed files 7z ace ar arc arj bz2 cab gz lha lzma lzx pbz pbz2 pet
rar rpm rz sea shar sit tar tar.bz2 tar.gz tar.rz xar xz zip
zoo

doc files doc docx fodt chmhtmhtml htmlz odt ott rst rtf snb stw
sxw troff txt uot wpd xml

pdf related djvu dvi pdf ps tex texi

ebooks azw epub fb2 lit lrf mobi pdb tcr txtz

other formats cpio png

And possibly others. The real value add to P_dmf is its inferential capability to apply a chain
of conversions to achieve a result even if your input data are nested archives and/or formats
that need intermediary processing until a UTF-8 encoded text can be obtained.

8.4 Dependencies

P_dmf uses several available external converters. The script will warn you, if some of these
auxiliary tools are missing on your system.

If you want to know the supported or available converters on your system, use the --conv

option. If you want to know which are missing on your system, call

$ PM_CONVERTOR_WARNINGS=1 P_dmf -?

This will list supported, but not installed converters:

For support of arc2_ conversion install a tool used by PMLIB...

For support of arj2_ conversion install a tool used by PMLIB...

For support of chm2pdf For support of arc2_ conversion ...

For support of arj2_ conversion install a tool used by ...

For support of chm2pdf conversion install a tool used ...

Missing dependenciesmaybe also tested (and installed) by pm_install scriptwhich is placed
at /opt/PetaMem/bin/active. Just call

$ perl pm_install -testonly

and the installation process will be driven automatically.

8.5 Input Texts, Encoding

P_dmf checks files for encoding, but it is only a heuristic guess. When the encoding is not
recognized, text is removed from a processing queue. Although P_dmf is able to change

39

8. P_dmf: Data Mining Framework PMSE Manual

encoding and to ”repair” the text4, these functions are limited.

If the pre-defined conversion methods do not fit the requirements on the file processing,
it is possible to specify a configuration file with a complete set of instructions - including a
call of a external application. See section 8.6 below.

8.6 Wikimedia Processing

Wikimedia files are fetched by P_daf (see 7) in PMSE as xml.bz2 dumps. The Wiki file must
have a specific name containing a date in a format of YYYYMMDD. The absolute path of the file
may be e.g.:

/data/library/e/n/g/wikimedia/wikipedia/eng-20110901.xml.bz2

P_dmf will load the newest file, unpack it, split it into single articles and create a trie struc-
ture in the derived directory according to names of the articles. This feature is quite differ-
ent from the standard procedure (conversion from one format into another) and therefore
it needs a special code path.

This code path is specified via .dmf.info configuration files. These files should be included
in a directory (or a parent directory) with the source files - that means somewhere in the
original directory.

8.6.1 Wikipedia Configuration File

The configuration file should be stored in a text format. See the example .dmf.info example
below.

The whole config file is snippet of Perl code. The main frame of the config file is an ar-
ray (reference - see enclosing square [] brackets). Each position in the array holds a hash
(reference) {} - the hash contains information for processing of specific file. The hash may
contain several key/value pairs:

order defines the sort order of sections if instructions for multiple files are defined. (The
main array contains more than one hash reference.)

regex defines a regular expression which is matched against all source files in a given
(sub)directory. If the name of the source file matches the regexp, the source file is
recognized as a target of this configuration file and the operations specified in tasks
key will be processed on the specified source files.

tasks defines a hash which itself may contain three keys:

process Replaces the generic conversion chain with specific instructions

prehook Allows to modify the processed file before the conversion.

posthook Allows to modify the processed file after the conversion.

The type of the conversion chain and the defined hooks are independent.

The process key in the previous example contains instructions for the conversion. It can be
briefly described in a few steps: We check the date in the filenames. This is handy when
multiple Wikimedia dumps are present in the same directory, because we want to process

4See section 15 for details.

40

PMSE Manual 8.6. Wikimedia Processing

T
a
b
le
8
.1
:
.d
m
f.
in
fo

e
x
a
m
p
le

[

{

o
r
d
e
r

=
>
1
,

r
e
g
e
x

=
>
q
r
{
/
o
r
i
g
i
n
a
l
/
w
i
k
i
m
e
d
i
a
/
\
w
+
/
\
w
{
3
}
\
-
\
d
{
8
}
.
x
m
l
}
,

t
a
s
k
s

=
>
{

p
r
o
c
e
s
s
=
>
s
u
b
{

m
y
$
a
r
g
s
_
h
r
=
s
h
i
f
t
;

m
y
$
w
=
$
a
r
g
s
_
h
r
-
>
{
f
i
l
e
}
;

m
y
$
n
e
w
e
s
t

=
1
;

#
i
f
f
i
l
e
n
a
m
e
c
o
n
t
a
i
n
s
a
d
a
t
e

i
f
(
m
y
(
$
s
,

$
v
e
r
s
i
o
n
,
$
e
)
=
(
$
w
=
~
m
{
(
.
*
)
(
(
?
:
1
|
2
)
(
?
:
9
|
0
)
\
d
\
d
(
?
:
0
[
0
-
9
]
|
1
0
|
1
1
|
1
2
)
(
?
:
[
0
-
2
]
\
d
|
3
0
|
3
1
)
)
(
[
^
/
]
*
)
}
x
m
s
)
)
{

m
y
@
a
l
l
_
f
i
l
e
_
v
e
r
s
i
o
n
s
=
g
l
o
b
(
"
$
s
*
$
e
"
)
;

m
y
@
a
l
l
_
d
a
t
e
s
=
s
o
r
t
{
$
b
<
=
>
$
a
}
m
a
p
{
s
{
\
A
$
s
(
.
*
)
$
e
\
z
}
{
$
1
}
;
$
_
;
}
@
a
l
l
_
f
i
l
e
_
v
e
r
s
i
o
n
s
;
#
#
n
o
c
r
i
t
i
c

$
n
e
w
e
s
t
=
0
i
f
$
v
e
r
s
i
o
n
!
=
s
h
i
f
t
@
a
l
l
_
d
a
t
e
s
;
;
#
r
e
t
u
r
n
n
e
w
e
s
t
v
e
r
s
i
o
n

} i
f
(
$
n
e
w
e
s
t
)
{

#
n
o
v
e
r
s
i
o
n

#
p
a
r
s
e
t
h
e
f
i
l
e
n
a
m
e
t
o
g
e
t
n
a
m
e
o
f
c
u
r
r
e
n
t
f
i
l
e

$
w
=
~
m
{
^
(
?
<
p
a
t
h
>
.
*
?
)
(
?
<
f
i
l
e
>
\
w
{
3
}
-
\
d
{
8
}
\
.
x
m
l
(
?
:
\
.
b
z
2
)
?
)
$
}
x
m
s
;

$
w
=
r
e
a
l
p
a
t
h
(
$
w
)
;

#
t
h
e
a
b
s
o
l
u
t
e
p
a
t
h
t
o
t
h
e
f
i
l
e
/
d
a
t
a
/
l
i
b
r
a
r
y
/
i
/
n
/
a
/
o
r
i
g
i
n
a
l
/
w
i
k
i
m
e
d
i
a
/
w
i
k
i
p
e
d
i
a
/
i
n
a
-
2
1
1
3
0
9
0
9
.
x
m
l
.
b
z
2

m
y
$
f
i
l
e
=
$
+
{
f
i
l
e
}
;
#
n
a
m
e
o
f
t
h
e
f
i
l
e
:
i
n
a
-
2
1
1
3
0
9
0
9
.
x
m
l
.
b
z
2

m
y
$
o
u
t
=
$
w
;

$
o
u
t

=
~
s
{
o
r
i
g
i
n
a
l
}
{
d
e
r
i
v
e
d
}
x
m
s
;

$
f
i
l
e

=
~
s
{
\
.
b
z
2
}
{
}
x
m
s
;
#
s
t
r
i
p
s
u
f
f
i
x
o
f
t
h
e
a
r
c
h
i
v
e

m
y
$
c
m
d
=
"
P
_
d
m
_
w
i
k
i
-
-
a
c
t
i
o
n
t
x
t
=
$
f
i
l
e
-
-
i
n
$
w
-
-
o
u
t
$
o
u
t
/
l
v
l
.
l
a
s
t
/
$
f
i
l
e
-
-
f
u
l
l
n
a
m
e
s
"
;

p
m
s
e
_
r
e
p
o
r
t
(
"
P
e
r
f
o
r
m
i
n
g
$
c
m
d
\
n
"
,
3
)
;

`
$
c
m
d
`
;

#
e
x
e
c
t
h
e
c
o
m
m
a
n
d

p
m
s
e
_
r
e
p
o
r
t
(
"
T
h
e
s
p
l
i
t
o
f
$
f
i
l
e
i
s
f
i
n
i
s
h
e
d
\
n
"
,
3
)
;

}

}
,

}
,

}
,

]

41

8. P_dmf: Data Mining Framework PMSE Manual

only the latest dump.5 Then is prepared the resulting path in derived directory. Finally, the
Wikipedia dump is unpacked and segmented by P_dm_wiki script.

8.6.2 Further Processing

P_gnp is able to read all files from given directory and process them at once. So, if you want
to obtain a word list, or a list of n-grams from the whole Wikipedia, just specify the input
directory - like e.g.:

$ P_gnp --in $ PMCORP_ROOT/e/n/g/derived/wikimedia/wikipedia/ <other opts>

8.7 Examples

Documents processing

Process all newest documents inwikimedia directory. The --in option is specified as a glob,
thus the wikimedia directory is searched as a shallow structure.

$ P_dmf --in original/wikimedia/*

Process all files in original directory. Use P_ici for parallel processing and recursive descent.

$ P_ici --recurse --parallel --cpu 8 'P_dmf --in [%f]' original

5The unpacking and segmentation of Wikipedia requires hundred thousands of directories and gigabytes of
disc space.

42

Chapter 9

P_dmp: Distance Measures Processor

P_dmp calculates distance measures for pairs of N-grams. You can use about cca. twenty
distance metrics. See section 9.4 that describes these in detail.

N-gram 1

distance measure
computation

N-gram 2

hash with values
 in Storable format

Figure 9.1: P_dmp schematic overview

$ P_dmp -?

9.1 Reference

PMSE Distance Measures Processor

USAGE P_dmp [options]

OPTIONS

–bulk <filename>

Read options --ngrams and --distance and distance parameters from given bulkfile.

43

9. P_dmp: Distance Measures Processor PMSE Manual

–distance <distance_name=params|?>

Will count values of the specified distance measure for the given N-grams.

To list available measures:

P_dmp -distance ?

Available common parameter is normalized. If it is true, resulting distance is rescaled
and has values in interval [0, 1].

There are few distances having specific optional parameters. These are:

mahalanobis: matrix

Matrix has to be regular matrix written in the form as:

[[1, 0], [0, 1]] for 2-dimensional space

[[1, 0, 0], [0, 1, 0], [0, 0, 1]] for 3-dimensional space

etc. If unit matrix is specified, mahalanobis comes into euclid.

minkowski: p

Domain of p is interval (0, Inf].

In case p=2 distance comes into Euclid. For p=1 we are receiving manhattan dis-
tance.

tversky: coef12 coef21

Both parameters are nonegative reals and at least one is positive.

For coef12=coef21=1 tversky becomes tanimoto. For coef12=coef21=0.5 tversky
becomes dice.

jaro_winkler: prefix_lenght_min prefix_weight

0<prefix_weight<1/4, 0<prefix_lenght_min<=4

–ngrams <ngram1> <ngram2>

Contains N-grams for which a mutual distance will be computed.

–out <filename>

Defines the output directory. If --out STDOUT, the output will be printed to STDOUT.

–separator <str>

Character(s) separating tokens in N-gram. Empty string by default.

9.2 Examples

Example of use

$ P_dmp --distance 'levenshtein=normalized=1' --ngrams 'black dog barks' \

> 'white dog barks' --out STDOUT --separator ' '

44

PMSE Manual 9.3. Q&A

This will calculate normalized Levenshtein distance between trigrams black dog barks and
white dog barks

The output looks like:

'levenshtein' => {'params' => {'normalized' => 1, 'l1' =>

['black','dog','barks'], 'l2' => ['white','dog','barks']},

'value' => '0.333333333333333'}

Similarly, we could move options to bulk file. Let’s have following file bulk:

[levenshtein]

l1=black dogs barks

l2=white dogs barks

normalized=1

We could call script like this:

$ P_dmp --bulk bulk --out STDOUT --separator ' '

9.3 Q&A

How to display the output?

The option --out defines the name of the outfile, which is stored in Storable format. (Use
--out STDOUT to print the result on STDOUT.) To convert the output to human-readable text
use the P_dvf or the Perl Data::Dumper 1 module.

9.4 Distance Functions Characteristics

The following distances are supported by P_dmp. The most of them are metrics (i.e. they are
following axioms of identity, symmetry and triangle inequality) when the normalized option
is used. Several distances are notmetrics (renkonendistance breaks axiomof identity, tversky
distance breaks axiom of symmetry, jaro_winkler breaks axiom of triangle inequality etc.).

For all the following paragraphs let’s suppose we have N-grams (i. e. vectors) 𝑝 and 𝑞. Let’s
denote 𝑝𝑖 as i’th token of N-gram 𝑝, and 𝑞𝑖 as i’th token of N-gram 𝑞.

Futhermore let #𝑝 denote the number of tokens in N-gram 𝑝 (i. e. #𝑝 = 𝑛) and let #̂𝑝 denote
the number of unique tokens in N-gram 𝑝 (i. e. #𝑝 ≥ #̂𝑝). Similarly for the others vectors/sets.

We will also need unions and intersections. Hence let’s denote 𝐼 as the set of tokens at the
intersection of 𝑝 and 𝑞 and 𝑈 as the set of tokens at the union of 𝑝 and 𝑞.

Another terminology is need for the distances between frequency-orderedN-grams. In fact,
a frequency-ordered N-gram is a histogram. Let 𝑓(𝑥) denote the position of the token 𝑥 in
the vector/histogram 𝑝. Similarly, let 𝑔(𝑥) denote the position of the token 𝑥 in the vector/his-
togram 𝑞 if it exists. Position of 𝑥 needn’t to exists in 𝑝. In this case let’s 𝑔(𝑥) denote #𝑞.

1http://search.cpan.org/~smueller/Data-Dumper-2.131/Dumper.pm

45

9. P_dmp: Distance Measures Processor PMSE Manual

Block distance

Let’s denote 𝑃 as the number of elements of 𝑝 in 𝑖 and, similarly, let 𝑄 denote the number of
elements of 𝑞 in 𝑖. Then we can define the Block distance as follows:

𝐷𝑏𝑙𝑜𝑐𝑘(𝑝, 𝑞) ∶=
#𝑝 + #𝑞 − 𝑃 − 𝑄

#𝑝 + #𝑞
.

BrayCurtis distance See Dice distance.

Canberra distance

𝐷𝑐𝑎𝑛𝑏𝑒𝑟𝑟𝑎(𝑝, 𝑞) =
�

𝑛
�
𝑖=1

|𝑓(𝑝𝑖) − 𝑔(𝑝𝑖)|
|𝑓(𝑝𝑖)| + |𝑔(𝑝𝑖)|

,

City block distance See Manhattan distance.

Chebyshev distance

Let 𝑝 and 𝑞 are frequency-ordered histograms of the same dimension. Then we define:

𝐷𝑐ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣(𝑝, 𝑞) ∶=max𝑖(|𝑓(𝑝𝑖) − 𝑔(𝑝𝑖)|) .

Chess-board distance See Chebyshev distance.

Correlation distance

In fact this distance equals sample correlation coefficient. See PMLIB::Stochastic::Sample::sam-
ple_correlation.

Cosine similarity

Both vectors must be of the same length #𝑝 = #𝑞 = 𝑛.

𝐷𝑐𝑜𝑠𝑖𝑛𝑒(𝑝, 𝑞) ∶= 1 −
∑𝑛

𝑖=1 𝑝𝑖𝑞𝑖

�
∑𝑛

𝑖=1 𝑝
2
𝑖�
∑𝑛

𝑖=1 𝑞
2
𝑖

Czekanowski distance

𝐷𝑐𝑧𝑒𝑘𝑎𝑛𝑜𝑤𝑠𝑘𝑖(𝑝, 𝑞) ∶=
2#𝐼

#̂𝑝 + #̂𝑞

46

PMSE Manual 9.4. Distance Functions Characteristics

Damerau-Levenshtein distance

TheDamerau-Levenshtein distance is calculated by counting theminimumnumber of oper-
ations needed to transformone string into the other. An operation is defined as an insertion,
deletion, or substitution of a single character, or a transposition of two adjacent characters.

See also Levenshtein distance, which works in a similar process, except that it doesn’t in-
clude transpositions.

Dice distance

𝐷𝑑𝑖𝑐𝑒(𝑝, 𝑞) ∶=
2#𝐼

#𝑝 + #𝑞
.

It is special case of Tversky distance for 𝛼 = 𝛽 = 1
2 .

Discrete Distance

𝐷𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑝, 𝑞) is 0 if 𝑝 and 𝑞 are not identical, 1 otherwise.

Edit distance See Levenshtein distance.

Euclidean distance

The Euclideanmetric is probably the best known distance. The Euclidean distance between
points 𝑝 and 𝑞 is the length of the line segment connecting them.

Here is the form for frequency-ordered histograms of the same dimension:

𝐷𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑝, 𝑞) =
�

𝑛
�
𝑖=1
(𝑓(𝑝𝑖) − 𝑔(𝑝𝑖))2 .

It is a special case of the Minkowski and Mahalanobis distance.

Hamming distance

the Hamming distance, between two ngrams of the same dimension, is the number of po-
sitions at which the corresponding symbols are different.

Jaccard index

The Jaccard index is used for comparing the similarity and diversity of sample sets. The
index is given by the formula:

𝐷𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝑝, 𝑞) =
#𝐼
#𝑈

.

47

9. P_dmp: Distance Measures Processor PMSE Manual

Jaro distance

𝐷𝑗𝑎𝑟𝑜(𝑝, 𝑞) =
1
3 �

𝑚
#𝑝
+
𝑚
#𝑞
+
𝑚 − 𝑡
𝑚 � ,

where

• 𝑚 is count of tokens occurring on similar positions in both n-grams, i. e.

𝑚 = # �𝑥 ∶ |𝑓(𝑥) − 𝑔(𝑥)| < ⌊max(#𝑝,#𝑞)
2 ⌋ − 1�. Let𝑀 denote set of these tokens.

• 𝑡 is half the number of transpositions for tokens in𝑀.

Jaro-Winkler distance

It is a variant of the Jaro distance metric with 2 extra parameters: we have 𝑘 as a prefix_

length_min parameter and 𝑙 as a prefix_weight parameter.

𝐷𝑗𝑎𝑟𝑜_𝑤𝑖𝑛𝑘𝑙𝑒𝑟(𝑝, 𝑞) = 𝐷𝑗𝑎𝑟𝑜(𝑝, 𝑞) + 𝑘𝑙(1 − 𝐷𝑗𝑎𝑟𝑜(𝑝, 𝑞))

Kulezinski distance

𝐷𝑘𝑢𝑙𝑒𝑧𝑖𝑛𝑠𝑘𝑖(𝑝, 𝑞) = 1 −
#𝐼
#𝑈

Levenshtein distance

The Levenshtein distance, sometimes called the edit distance, is a string metric for calculat-
ing the difference between two sequences. It is defined as the minimum number of edits
needed to transform one ngram into the other, with the allowable edit operations being
insertion, deletion, or substitution of a single character.

Mahalanobis Distance

The Mahalanobis distance is based on correlations between variables by which different
patterns can be identified and analyzed. It calculates the similarity of an unknown sample
set against a known one.

If we let 𝑝 and 𝑞 be frequency-histograms of the same dimension. And we also let 𝑣 denote
a vector (𝑓(𝑝𝑖) − 𝑔(𝑝𝑖))𝑛𝑖=1. Given a regular matrix 𝑆 we can obtain the distance by using the
following formula:

𝐷𝑚𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠(𝑝, 𝑞) = √𝑣𝑇𝑆−1𝑣

We can observe that Mahalanobis distance comes to Euclidean if 𝑆 is unit matrix.

48

PMSE Manual 9.4. Distance Functions Characteristics

Manhattan Distance

𝐷𝑚𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝑝, 𝑞) =
�

𝑛
�
𝑖=1
|𝑓(𝑝𝑖) − 𝑔(𝑝𝑖)| ,

This is a special case of a Minkowski distance.

Minkowski Distance

The Minkowski distance is a form of geometry in which the usual distance function, or
metric of Euclidean geometry, is replaced by a new metric in which the distance between
two points is the sum of the absolute differences of their coordinates.

𝐷𝑚𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖(𝑝, 𝑞) =
�

𝑛
�
𝑖=1
(𝑓(𝑝𝑖) − 𝑔(𝑝𝑖))𝑝 ,

where 𝑝 is given as a parameter.

Needleman-Wunsch similarity Returns number of one-element matches from optimal
local alignment between two vectors according do Needleman-Wunsch algorithm.

Overlap distance

𝐷𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑝, 𝑞) =
#𝐼

min(#𝑝, #𝑞)
.

Renkonen distance

Let 𝑟𝑣(𝑥) be the relative occurence of the token 𝑥 in the ngram 𝑣. If we suppose #̂𝑝 = #̂𝑞, then
the Renkonen distance is given by the following formula:

𝐷𝑟𝑒𝑛𝑘𝑜𝑛𝑒𝑛(𝑝, 𝑞) = �
𝑥∈𝑢

min(𝑟𝑝(𝑥), 𝑟𝑞(𝑥)) .

Russel-Rao dissimilarity

Both boolean vectors must be of the same length.

Let’s denote 𝑛𝑖𝑗 as a number of corresponding pairs of elements in 𝑝 and 𝑞 respectively equal
to 𝑖 and 𝑗.

𝐷𝑟𝑢𝑠𝑠𝑒𝑙_𝑟𝑎𝑜(𝑝, 𝑞) =
𝑛10 + 𝑛01 + 𝑛00

#𝑝

Smith-Waterman similarity Returns number of one-elementmatches fromoptimal local
alignment between two vectors according do Smith-Waterman algorithm.

49

9. P_dmp: Distance Measures Processor PMSE Manual

Sokal-Sneath dissimilarity Both boolean vectors must be of the same length.

Let’s denote 𝑛𝑖𝑗 as a number of corresponding pairs of elements in 𝑝 and 𝑞 respectively equal
to 𝑖 and 𝑗.

𝐷𝑠𝑜𝑘𝑎𝑙_𝑠𝑛𝑒𝑎𝑡ℎ(𝑝, 𝑞) =
2(𝑛10 + 𝑛01)

𝑛11 + 2(𝑛10 + 𝑛01)

Sørensen distance See Dice distance.

Tanimoto distance

Tanimoto is a special case of a Tversky distance for 𝛼 = 𝛽 = 1.

Tversky distance

Let 𝑠(𝑎, 𝑏) denote those tokens from the N-gram 𝑎which are not in the N-gram 𝑏. The Tversky
distance is an asymmetric similarity measure which compares a variant to a prototype.

𝐷𝑡𝑣𝑒𝑟𝑠𝑘𝑦(𝑝, 𝑞) =
#𝐼

#𝐼 + 𝛼#𝑠(𝑝, 𝑞) + 𝛽#𝑠(𝑞, 𝑝)

See both the Tanimoto and the Dice distances for important special cases.

Typo distance

Typo (typographical) distance is a combination of levenshtein and euclid distance mea-
sures. Given two strings, we use levenshtein distance to detect the place in the sequence
where edit operation will happen, then we count euclidean distance of the characters par-
ticipating on the operation.

Input parameter is the keyboard model and the key-map for given language. Various mod-
els are available. See PMLIB::Metric::Typo for more information.

Yule dissimilarity Both boolean vectors must be of the same length.

Let’s denote 𝑛𝑖𝑗 as a number of corresponding pairs of elements in 𝑝 and 𝑞 respectively equal
to 𝑖 and 𝑗.

𝐷𝑠𝑜𝑘𝑎𝑙_𝑠𝑛𝑒𝑎𝑡ℎ(𝑝, 𝑞) =
2(𝑛10 + 𝑛01)

𝑛11𝑛00 + 𝑛10𝑛01

50

Chapter 10

P_dvf: Data Visualization Framework

The P_dvf script enables you to read and convert output of PMSE scripts into a human-
readable format. This is necessary because the PM scripts outputs Perl native data struc-
tures which can be difficult to read easily. You can convert the data to various data-types.
P_dvf also supports formatting, sorting and filtering of the output data.

You can load in data stored as Storable, text (even data printed with Dumper) and data
serializedwith YAML. Data generated in PMSE is stored as a PMSE object in Storable format.
Each object has specific methods for visualization and post-processing depending on the
nature of the data.

Data imported outside of PMSE will be handled with the most basic class: PMSE::Visualize.
This class allowsmerely basic visualizationmethods and storage. But if you knowyour data
correspond with one of the visualization class of PMSE::Visualize, you may specify type of
object (see reference: 10.1).

$ P_dvf -?

10.1 Reference

PMSE Data Visualization Framework

USAGE P_dvf [options]

P_dvf is a script intended for displaying results of low-level PMSE data-mining processes.

OPTIONS Unlike to other PMSE scripts, options may differ depending on the type of in-
put data. Some objects support some options and some don’t. Each object is aware about
methods, that may be used publicly, so when some P_dvf option is used in a wrong way, the
script will throw out a warning. The important thing to know is that all PMSE objects have
built-in documentation. When invoked, the self-documentation will provide info, how to
handle given object in P_dvf.

Below is a complete list of options thay may be used with P_dvf.

–doc all|<option>

51

10. P_dvf: Data Visualization Framework PMSE Manual

input

filter

output

sort

limit output

data transformation

Figure 10.1: P_dvf schematic overview

Will list info about loaded object. If all parameter was chosen, script will provide
complete overview about options that may be used with given object. You may also
specify one single option.

–filter <code>

The filtering is done via a perl code:

'$key ~= m{\d+}xms'

Will remove all keys (tokens) matching given regex.

'$val == 60'

Will remove all occurrences of given value. Note: filtering of Contingency object will
not cause the re-calculation of the values in the table.

–in <filename>

Defines an input file. Option --itype defines various available input data types.

52

PMSE Manual 10.1. Reference

–itype <type>

Format (type) of input data. Valid types are:

sbl Perl data structure

(default type)

dumper Data::Dumper style printed data

text plain text format

yaml YAML-style data

–istruct <object type>

This option may be applied when you import external data structure into P_dvf. Let’s
say you have a histogram in textual format, like this:

AA 3.5

BB 0.22

XX 1

...

By default, this structurewill be visualized (and dumped) by the PMSE::Visualizemod-
ule, which provides basic methods only. When the input structure is a histogram, it
may be specified with this option. Data will be treated then with appropriate module
(e.g.: with PMSE::Visualize::Histogram).

–otype <out-type>

Type of output data. P_dvf adopted the object oriented approach to visualization,
therefore exist a range of methods for given object. Some of them are generic and
some are specific

Generic methods are

graphic SVG

pdump Data::Dumper output

storable Storable (binary) file

text plain text

yaml YAML language

The SVG picture is created according to pre-defined options which are different for
various objects.

Specific methods for object:

Binary tree (categorization output)

newick

spreadsheet

–out <filename>

Defines thefilename for the output to bewritten to. If not defined, the output is printed
to STDOUT.

–sort <string>

The sorting string may be:

+val ascending

53

10. P_dvf: Data Visualization Framework PMSE Manual

-val descending

+key alph. ascending

-key alph. descending

10.2 Examples

Filter usage

Keys passed through positive filter:

_sort=$key !~ m{\d+}xmsg

sort_=$key !~ m{\w+}xmsg

1. Pre-sort filtering: data will be filtered before sorting. Unless the key contains a num-
ber, it is deleted. In other words: Only keys with a number will pass through.

2. Post-sort filtering: set on sorted data, only keys comprised from alphanumeric char-
acters will pass through.

Negative filter on keys:

_sort=$key =~ m{\pP}xmsg

sort_=$key =~ m{\d+}xmsg

1. Pre-sort filtering: keys which contain a punctuation mark will be deleted.

2. Post-sort filtering: keys which contain a number will be deleted.

Filtering values:

_sort=$value > 15

sort_=$value < 5 and $value > 15

1. Pre-sort filtering: values greater then 15 will be deleted.

2. Post-sort filtering: values lower than 5 and greater then 15 will be deleted.

When we say that keys or values will be deleted we mean that the entire hash entry will be
deleted.

Convert Text to Perl Data Structure

Consider the case where you have a printed data structure stored in a text file:

$VAR1 = {' ' => 1078,

' A' => 72,

' Ach' => 6,

' Aha' => 1,

' Aj' => 1,

' Ale' => 39,

' Ani' => 1,

' Atheneum' => 1,

};

Now you want convert it back to an internal Perl data structure:

54

PMSE Manual 10.2. Examples

$ P_dvf --itype dumper --in printed_text.txt --otype storable \

> --out storable_file

If you need the text in human readable form, just omit the --otype option, and the output
will be automatically converted to text. For more information about converting to sup-
ported formats with see figure table below.

FORMAT txt pdump YAML Storable dot JSON XML

txt + + + + - ? ?

pdump + + + + - ? ?

YAML + + + + - ? ?

Storable + + + + + ? ?

dot - - - + - ? ?

XML ? ? ? ? ? ? ?

JSON ? ? ? ? ? ? ?

55

10. P_dvf: Data Visualization Framework PMSE Manual

56

Chapter 11

P_gnp: Generic N-grams Processor

P_gnp is a powerful tool that covers a wide range of functions. It calculates and processes
N-grams, creates contingency tables, as well as calculates MI-score and t-score. Also, it is
capable to create ranks and compute key-words.

See the schema 11 for an overview of the process flow.

$ P_gnp -?

11.1 Reference

PMSE Generic N-grams Processor

USAGE P_gnp [options]

P_gnp is the core N-grams processing script in PMSE. It provides a wide range of N-grams
evaluations.

The process workflow of P_gnp is as follows:

text(s) -> tokenization -> N-grams frequencies ->

contingency tables -> association measure score -> output

Throughout this processing chain, various hooks are deployed and support extensive data
mangling (filters, transformations etc.).

OPTIONS

–bulk <file>

With the --bulk option you can define an INI file, which can be used for histogram
/ hash filtering and tokens processing. The INI file has a structure of ’[section]’ and
’name=value’, the heredoc style can be used. ’Section’ is the name of a procedure
(process / ofilter), ’name’ is name of a hook (the same as in --process and --ofilter).
’Value’ stores the code, which will be executed on the result of an action.

–cluster [action1, action2 ... | ?]

Available actions are:

57

11. P_gnp: Generic N-grams Processor PMSE Manual

raw text

tokenization

storable

ifilter

process

ofilter

association measures
computation

contingency tables
computation

N-grams creation

Figure 11.1: P_gnp - overview of the processes

count - results are n-grams counts

freq - results are n-grams frequencies

prob - results are n-grams probabilities

If no action is specified, the default action is output.

It is possible to specify several actions in one call.

58

PMSE Manual 11.1. Reference

–contingency

Computes contingency tables for N-grams.

Note: In case of a lot of N-grams it can take some time.

–delimiter <regex>

Delimiter has the form of a Perl regular expression. It enables the tokenizer to dissect
the text into discrete tokens. If the user doesn’t set his own value, the default delimiter
from the PMLIB tokenizer is taken.

–histogram [<action>=<filename> | ?]

Wecan count the distribution (histogram) for the result of each ’action’. The histogram
is stored in file ’file’. Actions could be:

count histogram of n-gram(s) occurrences

prob histogram of n-gram(s) probability

freq histogram of n-gram(s) frequency

measure histogram of n-gram(s) measure(s)

Output file is stored in Storable format. When the hook is ’measures’, a code referring
to appropriate measure and dependence is prepended to the filename, because action
’measures’ may contain multiple values.

–ifilter [<type>=<regex> | ?]*

This option may be provided multiple times (with different content for type of course)
to define various filters, these are inserted at specific places during data stream pro-
cessing. Valid values for ifilter <type> are:

+token tokenizing step: matching tokens will pass

-token tokenizing step: matching tokens will be blocked

+ngrams n-gram processing step: matching tokens will pass

-ngrams n-gram processing step: matching tokens will be blocked

<regex> may be any regular expression. Please take care to quote the whole expres-
sion, like ’<filter>=<regex>’, to prevent the shell modifying it.

–in <filename|path>

Youmay specify a file or a path to directory. If a filename is specified, only this concrete
file will be processed.

If a path to directory was specified, the P_gnp will find recursively all plain text files
with *.txt suffix and these will be tokenized in a parallel loop.

Note: in such case cross-text n-grams will be created unpredictably, because the order
of input files will be random - that is a consequence of parallel processing.

–keywords <filename>

Outputs keyword weights. <filename> is hash in storable format representing fre-
quencies/probabilities of reference corpus.

Interpretation: higher value for keyword means higher representativeness in corpus
regarding to reference corpus.

59

11. P_gnp: Generic N-grams Processor PMSE Manual

–measure [<measure_name>=<args> | ?]

Computes requested measure for all N-grams.

The following measures are currently implemented:

mi miscore

t tscore

Both MI-score and t-score accepts dependencies as a parameter. Dependencies are of
the form

all

(nothing)

dep11|dep12|...|dep1N,dep21|dep22|...|dep2N,...,depM1|depM2|...|depMN

where ’depkl’ is of the form ’number1 number2 ... numberp’, where number is the i-th
token of an N-gram.

If ”all” is specified, all dependencies will be printed.

If no param is specified, all tokens are considered as independent. It is the same as if
we would specify 1|2|3|...|n, i. e. 1|2 for bigrams.

Let’s look at the 4grams example. If we specify: --measure 'mi=1 2|3 4,1|2|3|4'

P_gnp outputs for each N-gram:

1) MI-score for dependence between 1st and 2nd token

2) MI-score for no dependencies

Note: in dependencies, independent tokens could be omitted. This means it is suffi-
cient to put ’1 2’ instead of ’1 2|3|4’.

–ngram [<n-size> <window> <separator_character(s)>]

<n-size> must be a positive integer, ngram option defines the number of tokens from
which an N-gram is comprised.

<window> is also a positive integer and defines the number of contextual tokens from
which an N-gram is generated.

<separator> defines string to be used for separating tokens in an N-gram.

Default value is 2 2 ’ ’. If you specify one of them, you have to specify all the others.

–ofilter [<hook>=<code> | ?]

Ofilter can be used on the result of each action, which is always a hash, thus with
<code> we can affect keys and values. Hook denotes the specific part of the process
where the ofilter is applied. Hook can be:

ngrams filter hash with N-grams and their frequencies

_hist filter result of action before histogram is created

histogram filter hash with histogram values (note: keys and values

are both numeric)

Code could have form of $key =~ m{.*}xmsg or $value >=< number. You can also insert
the name of an INI file via the –bulk option.

60

PMSE Manual 11.2. Examples

–out <directoryname | STDOUT>

Defines the output directory. Results of all actionswill be printed into correspondingly
named files in this directory in the Storable format.

If STDOUT is specified instead of file, the Perl data structure will be printed directly
on STDOUT in Data::Dumper format.

–process [<hook>=<subst> | ?]*

<subst> is a Perl substitution operator: ”s{pattern}{replacement}flags”, whereas ”pat-
tern” is a regular expression, ”replacement” may be a string or even Perl code if the
”e” flag is given. For further info see e.g. http://perldoc.perl.org

<hook>may be one of the following:

_ngrams first tokens processing before set is made

ngrams_ second tokens processing before set is made

A filter can be applied between both hooks. After the second processing of tokens is
finished, the tokens-list is available, from which are generated N-grams.

–rank <measure_name | ?>

Outputs rank of specified measure.

Measures have their own parameters (like dependencies in MI-score or t-score). If
both –rank and –measure are specified, rank is computed for all satisfying measures.
I. e. if –measure ’miscore=1|2|3,1|2 3’ –rank=miscore is specified, two ranks for MI-
score are computed.

If –rank is specified and –measure is not, the default parameter for that measure
(which is specified as parameter of –rank) is used.

11.2 Examples

Get basic N-grams list

$ P_gnp --cluster count --ngram 3 4 ' ' --out outdir --in corpus.txt

Will get 3-grams from the window of size 4 from ”corpus.txt” and store them as Perl data
structures into the ”outdir” directory in the Perl Storable format. Tokens in each N-gram
are delimited by whitespace.

Note: The number Nmust be a positive integer number, thus ’--ngram -2.5’ is not accepted.

Define more options for N-grams list

$ P_gnp --cluster count --ngram 2 3 ' ' --out outdir --delimiter '\s+' \

> --process '_ngrams=s{A}{B}xmsg' --bulk INI_file \

> --histogram 'ngrams=histogram' --ofilter 'histogram=$value < 5' --in corpus.txt

Computes bigram frequencies from a ’text’ window of size 3. The tokens in the text are split
by white-space. The tokens in each N-gram are also delimited by whitespace. Before we get
the hash with the N-grams, we change each token ’A’ to token ’B’. Where we originally had

61

11. P_gnp: Generic N-grams Processor PMSE Manual

’A D’, we now have ’B D’. With --bulkwe will load the INI_file with the next commands for
processing. When the N-grams are finished, we create a histogram, which stores distribu-
tions of the N-gram frequencies. Because we don’t want any values which occur less then
5 times, we use the --ofilter option to filter out these values.

Process multiple source texts

$ P_gnp --cluster count --ngram 2 4 ' ' --in /data/library/e/n/g/derived

Will find recursively all *txt files in /data/library/e/n/g/derived and process them at once.

Get contingency table for N-grams

$ P_gnp --contingency --ngram 2 2 ' ' --out outdir --in corpus.txt

Computes bigram contingency tables. For the options ’contingency’ and ’measure’, the sep-
arator must be given.

Get N-grams and MI-score

$ P_gnp --measure 'mi=all' --ngram 2 3 '<>' --out outdir --in corpus.txt

Computes MI-score for bigrams in a window of size 3, the tokens in each bigram are delim-
ited like this: word_A<>word_B

$ P_gnp --measure 'mi=all' --ngram 3 4 '*' --out outdir --in corpus.txt

Computes MI-score for trigrams in window of size 4, resulting structure will contain all
types of MI-score.

$ P_gnp --measure 'mi=1 2|3 4' --ngram 4 4 ' ' --out outdir --in corpus.txt

Computes MI-score for trigrams in window of size 4, resulting structure will contain the
MI-score with the dependencies in 3rd and 4th tokens and in 1st and 2nd tokens.

11.3 Q&A

What is a ’window’ in practice?

There is a sentence: Fred is going to Wilma, let’s assume the user wants trigrams fromwin-
dow = 3. Then the first trigramwill be: Fred is going, the second: is going to and the third:
going to Wilma. If window = 4, we will have 4 tokens from which the trigram will be gener-
ated, in which case the total counts of trigrams will increase:

window = Fred is going to. Possible trigrams are: Fred is going, is going to, Fred going to

and Fred is to .

What type of separator may be defined?

Everything you can represent with a regular expression.

62

PMSE Manual 11.3. Q&A

'Fred is going' (--separator = ' ' [whitespace])

'Fred*is*going' (--separator = *)

'Fred<>is<>going' (--separator = <>)

N-grams in the output file are strange. They have different sizes.

Did you use the ’ifilter’ option? It’s possible that ”trash” might be found within the tokens.
For example: white spaces, punctuation, ends of lines etc. You could set

--ifilter '+token=\A\p{Alpha}+\p{Digit}*\z'

to get N-grams comprised from alpha-numeric characters only.

How do the dependencies work? What is MI-score and t-score for?

The MI-score for bigrams is computed as given by this expression:

MI = log2
P(token1, token2)
P(token1)P(token2)

We can generalize this into a trigrams formula in several ways. If all the tokens are inde-
pendent, we could use the following formula:

MI = log2
P(token1, token2, token3)

P(token1)P(token2)P(token3)

In that case we don’t use dependencies.

If we wanted to set a dependency between token2 and token3, the formula would look like
this:

MI = log2
P(token1, token2, token3)
P(token1)P(token2, token3)

We add --measure 'mi=2 3'.

Ifwewant to knowabout all kinds of dependencies, wehave to add the option --measure mi=all.

Here is a formula for bigrams for the t-score:

t =
𝑁P(token1, token2) − P(token1)P(token2)

√𝑁P(token1, token2)

Dependencies behave in a similar fashion in both t-score and MI-score.

However, the MI-score is not quite so accurate for low frequency N-grams. Some linguists
recommend to filter the N-grams before computing the MI-score.

In the case of the t-score, high values are reached by synsemantic words (like in, on, with,
or and so on) or by punctuation marks.

63

11. P_gnp: Generic N-grams Processor PMSE Manual

How to interpret the dependencies?

If no dependencies are set, we simply do a basic test for collocations.

In case we want to know more detailed information about current collocation, dependen-
cies come in handy.

Let’s say, we’ve found the trigram ’a b c’ with high MI-score without dependencies. This
means that some tokens of this 3gram are probably ’somehow’ related. How related? That’s
where we should ask for dependencies.

If we switch the --measure mi=all option, we can see if the high MI-score in the independent
case is caused by the bigram ’a b’ (dependence ’1 2’), or by the bigram ’b c’ (dependence
’2 3’), or even by ’a * c’ (dependence ’1 3’). Where all kinds of MI-score are high, this can
signify that the entire trigram ’a b c’ is a collocation.

If we have the 5gram ’a b c d e’ we can also set more than 1 dependency. For example the
dependencies ’a b’ and ’b c d’ could be specified altogether as ’1 2’ ’3 4 5’ (i. e. high MI-score
in this 5gram could be caused by the bigram ’a b’ and the trigram ’c d e’ being collocations).
We should note that with any outcome where ’n’ is bigger than 3 or 4, we might well look
for other kinds of MI-score.

The same techniques can be used for t-score.

64

Chapter 12

P_help: PMSE Helper

P_helpwill give you a basic reference about PMSE environment. Current version supports
also listing of environmental variables.

$ P_help -?

12.1 Reference

PMSE Helper

USAGE P_help [options]

P_help provides generic help for PMSE environment.

OPTIONS

–pmroot <path>

You can specify PMSE root manually. Otherwise will be used a value of PMSE_ROOT
variable.

–topic <type>|?

Choose topic of help. Available are:

list will list all PMSE scripts, their function + version

env will check and list environmental variables

12.2 Examples

Basic usage

$ P_help --topic list

Will list all PMSE scripts and will print brief information about their functions.

65

12. P_help: PMSE Helper PMSE Manual

66

Chapter 13

P_ici: Intelligent Command Iterator

The purpose of this script is to provide a powerful, but easy to use, command iterator. While
the shell provides several methods for using loops, it can be quite difficult to get simple
repetitive commands done quickly as so called ”one-liners”. P_ici is meant to facilitate
precisely this: Execute repetitive commands that change only a little in their input param-
eters.

options

CLI-templating

command arguments

For all arguments:
parallel execution

1 .. N CPUs

Process
 1

..
Process

 N

Figure 13.1: P_ici schematic overview

While the command may be used most often directly with files, it should also be consid-
ered a more generic tool. The arguments could be several tokens that have to be fed as
input parameters to the input commands to be executed. Finally, if file searching, defining
and filtering capabilities of the P_ici are not sufficient for your needs, you might consider
combining this tool with the UNIX find utility.

67

13. P_ici: Intelligent Command Iterator PMSE Manual

$ P_ici 'echo [%f]' `find . <some exotic search params>`

There are some extensions to this idea, like parallelization, which go beyond the possibili-
ties of shell iteration and allow you to make better use of your system resources (see a few
examples in section 13.2).

P_ici allows to load two types of arguments: ”pure” arguments (where no semantic is as-
sumed) and arguments related to path semantic (files or directories). The second type of
arguments is loaded via --in option. The ’pure’ arguments are interpreted in the frame of
the command as they are.

On the other hand, files (specified with a glob or a recursive search) are transformed into
their absolute paths before they are used as an argument for the command. Here is an
example:

$ P_ici --in '*' 'echo [%f]'

/home/foo/file_a.txt

/home/foo/Documents

/home/foo/file_b.pdf

Will list all items (files, directories, links, etc.) that arematched by the ’*’ glob in the current
working directory, with their absolute paths.

$ P_ici 'echo [%f]' *

file_a.txt

Documents

file_b.pdf

The shell will first find all visible files and directories in cwd, then it will send this list to
P_ici as arguments. The result is a list of files with their paths relative to cwd.

It is very important to understand the difference between these two concepts and the need
to escape shell expansionwhen youwant P_ici to generate the list of files. Take for example
the command

$ P_ici 'echo [%f]' --in *

which gives the output:

/home/foo/file_a.txt

Documents

file_b.pdf

Why is that? Because the shell expanded the unescaped glob ’*’ and send the arguments
to P_ici, which will take these arguments and only the 1st one of them will be bound as
parameter to --in and gets its file semantics, while the others will be passed as regular
arguments as if you had done

$ P_ici 'echo [%f]' *

68

PMSE Manual 13.1. Reference

AWord About Parallelization

The available --parallel option allows you to spread the tasks to the available CPUs. In com-
binationwith the --cpu option youmay even over- or undercommit the number of available
CPUs (and thus the level of parallelization) overwriting the autodetection.

You may want to undercommit if you have IO-intensive tasks and your IO subsystem could
not cope with a number of parallel tasks equivalent to the number of CPUs. On the other
hand you may want to overcommit if you are developing and testing CPU-intensive paral-
lelised tasks for a bigger system on a smaller system.

It is also noteworthy to say, that an automatic load balancing happens. If you have 500 tasks
to process and 4 CPUs available, then each of the CPUs will get approximately 125 tasks if
these are about the same runtime each.

If on the contrary all tasks have various runtimes, the CPUs will be given tasks to process
as they become free. While P_ici itself cannot know the runtime of the task in advance, if
you do, you can send longest-running tasks to be processed 1st and thus get an optimum
overall runtime.

For many applications we canwork under the assumption, that the longest files will also be
those who take the longest time to process. Then, you can ensure by giving --insort -size

that the biggest files are processed first.

$ P_ici -?

13.1 Reference

PMSE Intelligent Command Iterator

USAGE P_ici [options] cmd [argument(s)]

Where cmd defines the command that shall be applied to all arguments. cmd contains one
or more unix/shell commands and one or more of these special placeholders:

[%\d] = the argument at index \d (given as positive integer)

[%#] = the index of the current file (starting at 1)

[%b] = basename of the current file (without last suffix)

[%d] = directory portion of the current argument/file

[%f] = the current file/argument quotemeta'd

[%F] = the current file/argument raw

[%m] = modified filename quotemetat'd

[%mb] = modified basename

[%md] = modified directory portion

[%ms] = modified last suffix

[%M] = full modified filename unquoted

[%t2] = the current file/argument-trie as string

[%2t] = the current file/argument-string as trie

[%p] = the current P_ici process-id

[%s] = suffix of the current file/argument

[%t] = current unix time in seconds since the epoch

69

13. P_ici: Intelligent Command Iterator PMSE Manual

[%u] = current time in microseconds after [%t]

[%x] = size of the current file/argument

This substitution does not happen if --raw option is given.

OPTIONS

–fatal

If this flag is set, execution of the issued command will stop on error. Else execution
will continue (default).

–filter_name mod=<repl>|neg=<regex>|pos=<regex>

Define positive (everything that matches will pass), negative (everything that matches
will not pass) and modification (everything will go through a replacement regex) fil-
ters for input files. Please be aware, that only files defined by --in parameter are
actually considered for filtering. Arguments are unfiltered.

You can define all filters at once anywhere on CLI, where the ’mod’ filter is applied
after the positive and negative filters.

–filter_type [<string>]

Define a string with file test operators. By default this string is empty and all types
of files are allowed as arguments. All Perl file test operators without the dash are
allowed, e.g. ’f r s’ means ”only readable fileswith nonzero size”. Please be aware, that
only files defined by --in parameter are actually considered for filtering. Arguments
are unfiltered.

–grace

If this flag is set and no arguments are given, the script will end gracefully.

–in <filename|glob>

Defines an input file or a glob, in which case all filenames that match will be consid-
ered for input. The glob must be escaped/quoted to prevent the shell from expanding
it.

Arguments specified via --in optionwill be treaten as files / or directories, i.e. the path
semantic will be expected.

If you want the input arguments to be ’pure’, specify them on the end of the command
as is suggested above.

–insort <type>|?

Defines the type of sorting for input files. Possible values for <type> are:

orig sequence of input files as they come from shell (default)

shuffle apply Fisher-Yates algorithm (unsort/shuffle file list)

+alpha sort in ascending alphabetical order

-alpha sort in descending alphabetical order

+size sort in ascending file size (from smallest to biggest)

-size sort in descending file size (from biggest to smallest)

+time sort by file timestamp (from oldest to youngest)

-time sort by file timestamp (from youngest to oldest)

70

PMSE Manual 13.2. Examples

–max <n>

Perform a maximum of n iterations.

–parallel

Execute commands in parallel, depending on number of cpus.

–raw

Do not interpret the command argument (ignore all [%x] sequences - if present - and
treat them verbatim)

–recurse

Recursive descent when iterating arguments (files/directories/...). This option should
be called together with --in.

–sleep <n>

Sleep n milliseconds between cmd calls in the main loop.

13.2 Examples

Find PDF Files

Find all PDF-Files (in the current directory and subdirectories) and convert them to ASCII-
text (in parallel).1

$ P_ici --in '*' --filter_name pos='\.((?i)pdf)\z' --parallel --recurse 'pdftotext [%f]'

The PDF→TXT conversion will be performed in parallel, depending on the number of CPUs
available - or given (--cpu).

In the above example, we are using a positive filter --filter_name pos to grab only pdf files
from all files that were matched by ’*’. We do this, because the filter we apply is case insen-
sitive and thus we will get all files with endings like .pdf, .PDF, .Pdf and so on.

We could have achieved a similar effect more efficiently by directly globbing for PDF-files
only like

$ P_ici --in '*{pdf,PDF}' --parallel --recurse 'pdftotext [%f]'

but this would omit weird cases like .Pdf, .pDF, .pDf etc. If you do know, that these do not
occur in your data, the second form is more efficient. If you do not know the data or do not
want to make any assumptions, the first form is preferred.

Identical Filenames in Subdirs

Nextwewillmake the above examplemore specific. Let’s considerwe have files of identical
names in subdirectories:

1pdftotext can be found as part of the poppler (see http://poppler.freedesktop.org/) package
on most Linux distributions.

71

13. P_ici: Intelligent Command Iterator PMSE Manual

./web/dir1/listA.pdf

./web/dir1/listB.pdf

./web/dir2/listA.pdf

./web/dir2/bookxyz.pdf

If we use example 1, the second file called ’listA’ will overwrite the first file of the same
name when the text is extracted into the target directory, because we effectively flatten the
directory structure. Thus we need to disambiguate ’dir1/listA’ and ’dir2/listA’ in the output.
We can do that, for instance, by adding a timestamp, [%u], to the output file name:

$ P_ici --in '*' --filter_name pos='\.((?i)pdf)\z' \

> --parallel --recurse 'pdftotext [%f] target_dir/[%u]-[%b].txt'

We recommend that you do not apply the template [%#] (an index of the current file being
processed) when the option --parallel is in use. If you want to distinguish the identical
filenames, this template will not help you, because each process evoked by P_ici obtains
only one file from the source directory, thus the index is ’1’ for all files. Instead of [%#] you
can use a timestamp [%t][%u].

Advanced Filtering

You can apply all filters at once, where the available name filters (--filter_name) ’pos’ and
’neg’ will filter the given file names by applying the regular expressions given in a pass and
block semantics respectively. The ’mod’ filter is applied after these and will change the file
names according to the replacement regular expression given.

Let’s say you need to perform this complex filtering:

“Get all .pdf files which start with a lowercase character and have an uppercase character as
the second character in their file name. From these filter out all those files that contain a ’x’
(or ’X’) anywhere in their filename. Finally, modify the resulting list to lowercase.”

Your filtering arguments could look like this:

$ P_ici 'echo [%f]' --in '*.pdf' --filter_name pos='\A[[:lower:]][[:upper:]]' \

> --filter_name neg='[xX]' --filter_name mod='s{(.+)}{lc($1)}ge'

The reason we use the regex filtering instead of trying to use shell globbing, is because if
our file names should be utf8, we would not catch all uppercase characters by a mere [A-Z]

- thus omitting greek or cyrillic or other uppercase characters.

You can additionally filter by file type, where all Perl file test operators2 are allowed. Please
be aware, that the file test operators must be given without the preceding dash. Also, P_ici
will ensure each operator is evaluated only once, even if given multiple times.

Modification Filtering

$ P_ici 'mkdir -p [%M]; mv [%f] [%M]' -filter_name \

> mod='s{.+\/(.).+\z}{uc($1)}e' -in 'alfons beta cecil'

2see http://perldoc.perl.org/functions/-X.html

72

Chapter 14

P_rer: Regular Expression Replacer

The P_rer script provides support for performing arbitrary and highly complex replace-
ments on the contents of a set of files.

raw text

bulk file / regular expression

text replacement

raw text

Figure 14.1: P_rer schematic overview

$ P_rer -?

14.1 Reference

PMSE Regular Expression Replacer

USAGE P_rer [options] regexp(s) file

73

14. P_rer: Regular Expression Replacer PMSE Manual

At least one regular expression in the form s{}{} must be given. On the end of the com-
mand, exactly one file argument must be given, but you can enter a glob matching several
files. Input and output may be specified also with otpions. You have to quote anything that
contains white-space characters. Use ’P_ici’ for more complex file specifications (albeit this
imposes a performance penalty).

OPTIONS

–bulk <file>

If regular expressions are too cumbersome to enter with bash escapes and/or it is
expected that you will need to recycle the replacement commands, you can specify
an INI-style bulk file that will be used to define the replacements.

You can name the sections in any way you like, but the expected keys per section are
<i> (mandatory and must not be empty), <o> (optional - default: empty string) and
<m> (optional - default: ’xmsg’).

You can use heredoc-style for the value definitions in all keys and you may define
these keys multiple times per section, in which case they are concatenated. All other
key names are ignored.

The resulting replacement is s{i}{o}m.

[section name]

i = \N{INFORMATION SEPARATOR ONE}(.+)

o = foo$1

m = ms

will perform a s{\N{INFORMATION SEPARATOR ONE}(.+)}{foo$1}ms replacement on the text
in question.

[multiline]

i = a

i = b

o = x

o = y

will perform a s{ab}{xy}xmsg replacement.

If several sections are given, the replacement order is defined by the alphabetical or-
der of the sections.

–in <file>

Input file. When you use --in, you have specify also --out and vice versa. Prepending
of file specification to the end of the command is not allowed.

You may use

P_rer <in> <out> <regexp>

or

P_rer <regexp> <file>

Combination is not possible.

74

PMSE Manual 14.2. Examples

–out <file>

Outfile. When you use -out, you should use also -in option. See -in for details.

–sect <match_rx>

You may optionally give a regular expression to define which sections are to be pro-
cessed. Bydefault, this are all sections that donot startwith a ’!’. (default is qr{(?<!\A!)})

14.2 Examples

Replace occurrences

Replace all occurrences of ’computer’with ’notebook’ in all text files in the current directory.

$ P_rer s{computer}{notebook}g '*.txt'

Remove trailing space

Remove all trailing space in the file spatial.text

$ P_rer 's{\s+\z}{}g' spatial.text

As the regular expressions make use of the Perl Regular Expression engine, you can also
make full use of embedded Perl code within your regular expressions:

Edit timestamps

Replace all occurrences of %d% in all *.time-stamp files with the current date.1

$ P_rer 's{%d%}{scalar localtime()}ge' '*.timestamp'

1quoting the regular expression may be necessary if it contains spaces

75

14. P_rer: Regular Expression Replacer PMSE Manual

76

Chapter 15

P_trt: Text Repair Tool

Similar to P_rer, P_trt is a tool for text manipulation. Unlike to P_rer, P_trt is working on
more abstract level. Basic function of P_trt is a deformating of text. The most general func-
tion is --action deformat.

text

perform (de)formating

storable

Figure 15.1: P_trt schematic overview

$ P_trt -?

15.1 Reference

PMSE Text Repair Tool

USAGE P_trt [options]

P_trt manipulates with text on more abstract level.

OPTIONS

–action <name>|?

77

15. P_trt: Text Repair Tool PMSE Manual

Available actions are:

dehyphen

compress_whitespaces

deformat

remove_headline

repair_interpunction

trim_whitespaces

–in <filename>

Defines the input file name. If --in STDIN, the input will be read from STDIN.

To end the the input use *END* sequence.

–out <dir>

Defines the output directory. If --out STDOUT, the output Will be printed to STDOUT.

15.2 Examples

Repair short text

Consider two lines of text followed by 2 newlines:

Perl is cool.

(I think .)

Now replace multiple inline white space characters to one single space and trim leading
and trailing white space of a string:

$ P_trt --out STDOUT --in text.txt --action compress_whitespaces

Perl is cool. (I think .)

Action deformat has in this case the same effect, because it replaces all newlines with spaces.
Then the function performs compression of white space characters. (The end white space
is trimmed, because nothig follows.)

Action repair_interpunction will try to make the text more coherent. It will group together
the text, punctuation and brackets. Only one line will be affected in this example.

$ P_trt --out STDOUT --in text.txt --action repair_interpunction

> \end{verbatim}

>
> \begin{verbatim}

> (I think.)

> \end{verbatim}

>
> Here is a more complex example of interpunction repair:

>
> \begin{verbatim}

> Bla bla , bla.(Ha ,ha.) # false

> Bla bla, bla. (Ha, ha.) # correct

> \end{verbatim}

78

PMSE Manual 15.2. Examples

>
> Action \verb;trim_whitespaces; will trim white space characters on the beginning and end

> of the string.\\

>
> \begin{Verbatim}[frame=single]

> P_trt --out STDOUT --in text.txt --action trim_whitespaces

Perl is cool.

(I think .)

More complex reparation of text may be performed by multiple use of P_trt.

79

15. P_trt: Text Repair Tool PMSE Manual

80

Chapter 16

P_vls: Variable Length Splitter

P_vls is one of the helpers PMSE script. It is intended to cut specified amount of word types
from a text file. P_vls converts the text file to a frequency list, sorts the list in descending
order and then splits the list according to specified options.

Tokens delimiter can be specified.

It is possible to specify both absolute or relative number of the carved word types. Also, it
is possible to cut a range. The output file is stored in Perl Storable format.

text

text 2 frequency
list conversion

frequency list

cut n positions

storable

Figure 16.1: P_vls schematic overview

81

16. P_vls: Variable Length Splitter PMSE Manual

$ P_vls -?

16.1 Reference

PMSE Variable Length Splitter

USAGE P_vls [options]

P_vls extracts words from given files and gives a cut its order.

OPTIONS

–cut <str>

str is composed of bounds delimited by whitespaces. Each bound specify where to
split the hash.

We returns a list of cuts from one bound to forthcoming one.

These boundaries could be specified as

absolute number (e. g. 40)

percent value (e. g. 40%)

increment (e. g. +10%, +50)

For example string ’0 0 1 2 +1% 100%’ for text of 1000 token types will be interpreted
as following:

1st cut: first word

2nd cut: second word

3rd cut: third word

4th cut: from fourth to fourteenth word

5th cut: from fifteenth to the end (1000th)

–delimiter <regex>

String that will be converted to regex which delimits words.

–in <filename>

Input files.

If you specify glob, be sure to use apostrophes because of bash expansion.

–out <directoryname> or <STDOUT>

Defines the output directory. Results of all actionswill be printed into correspondingly
named files in this directory in the Storable format.

If STDOUT is specified instead of file, the Perl data structure will be printed directly
on STDOUT in Data::Dumper format.

82

PMSE Manual 16.2. Examples

16.2 Examples

Basic information retrieval

$ P_vls --out STDOUT --in frequency_list.txt --cut '1000'

Will cut first 1000 words from frequency_list.txt and print them on STDOUT.

$ P_vls --out STDOUT --in frequency_list.txt --cut '10' '20'

Will cut word types from 10th to 20th position of the frequency list and print them on STD-
OUT.

$ P_vls --out STDOUT --in '*' --cut "+1% 0%" --delimiter '\s+'

Will cut e.g. first 10 tokens from a wordlist of 1000 tokens and will print the modified list
in reverse order on STDOUT. The input is specified as a glob. We delimit tokens just by a
white-space.

83

16. P_vls: Variable Length Splitter PMSE Manual

84

Chapter 17

PMSE: Tutorial

17.1 Learning by Example

The more functions PMSE offers for text processing the more difficult it becomes to learn
how to use PMSE effectively. To get acquainted with the PMSE suite quickly, we have pre-
pared tutorials with examples based on experience, of step-by-step PMSE script usage. You
can find these on the following pages.

17.2 Corpora

Here are a few corpora we are using in examples.

17.2.1 C1

A natural nuclear fission reactor is a uranium deposit where

analysis of isotope ratios has shown that self-sustaining nuclear chain

reactions have occurred.

17.2.2 C2

Klasterec above Ohre is a nice city.

17.2.3 C3

192.168.0.1, 192.168.0.2, 192.168.0.1 192.168.0.3, 192.168.0.1, 192.168.0.3

17.3 P_csp Interactive

17.3.1 Basic Usage of –iact

Now we will show the basic usage of the P_csp command, step by step. This tutorial uses
’interactive mode’ and should help you to get started quickly. There is also the ’CLI mode’1,
if you prefer. Interactive mode is easier to use than the CLI mode, but it is less powerful.

1CLI = command line interface

85

17. PMSE: Tutorial PMSE Manual

Complete functionality is achievedwith CLImode, although it is more complicated to learn.
So while this is good place to start, by the time you have completed these exercises, you are
encouraged to explore the power of the CLI.

We will use the C2 corpus in this tutorial:

Klasterec above Ohre is a nice city.

$ P_csp --iact

First we have to insert the path to our corpus.

Insert path to the corpus :

pmse> c2

Wrong format (file is unreadable, empty or nonexisting)

This error message is generated because we made a mistake - the system is case sensitive.
We have to type the path again, using the correct case:

pmse> C2

Insert directory or 'STDOUT' (default value: >P_csp.1569<):

pmse>

Now you can specify the path where the output directory is located. If you want to just
display the output on the screen, type STDOUT. Note that entering no input (just pressing
ENTER) will cause P_csp to create a local directory with the ID of the current run. This
’default’ directory will be placed in the CWD2.

Insert regex delimiting tokens (or ENTER to skip):

pmse>

This option is called the delimiter. It affects how the text is split. There is a default tokenizer
in PMLIB, but you can define your own, let’s take a look at an example (corpus C2):

Insert regex delimiting tokens (or ENTER to skip):

pmse> \s+

result:

120424-09:42:18.098449/1 - Output directory: STDOUT

'utcount' => {'a' => 1,'above' => 1,'Klasterec' => 1,

'city.' => 1,'is' => 1,'Ohre' => 1,'nice' => 1},

We can see the counts of tokens in the sentence. We used \s+ - one or more spaces - to
separate tokens in the sentence. The output looks almost OK, except for the sequence ’city.’.
To clean up this token, and others like it, we must add a regex to define punctuation as the
delimiter:

Insert regex delimiting tokens (or ENTER to skip):

pmse> \s+|\p{P}+

result:

120424-09:49:18.551789/1 - Output directory: STDOUT

'utcount' => {'city' => 1,'a' => 1,'above' => 1,

2Current working directory.

86

PMSE Manual 17.3. P_csp Interactive

'Klasterec' => 1,'is' => 1,'Ohre' => 1,'nice' => 1},

Choice of the delimiter determines the concept of your tokens. Because of our choice of
delimiter, you don’t have punctuation marks and spaces among your tokens now. Also con-
sider ’words’ like “Mike’s”. With the current definition of delimiter you would get ’Mike’
and ’s’ as separate tokens. If you want to have spaces and punctuation in your token list,
define the delimiter like this:

Insert regex delimiting tokens (or ENTER to skip):

pmse> \b

Here we use a word boundary as the delimiting element. Now we will get:

120424-09:51:02.061125/1 - Output directory: STDOUT

'utcount' => {'city' => 1,'a' => 1,' ' => 6,'above' => 1,'.' => 1,

'Klasterec' => 1,'is' => 1,'Ohre' => 1,'nice' => 1},

The default PMLIB tokenizer is a little bit complicated to be described, but when we look
at the output, it is the same as in the previous example. This is caused by the length of the
text. The output would differ if we had longer texts with various characters.

You can also specify your tokens concept with other options, for instance: ifilter and
process. Process is not implemented in the interactive mode, but you can specify it in CLI
mode.

The list of tokens can differ in relation to the desired output, in other words in relation to
the action you want P_csp to do:

Insert utcount, utprob or utfreq (you can specify more values

separated by whitespace):

pmse> utcount utprob

For information about each action take a look at the section 6.1. If you specify utcount and
utprob, the output will be stored in the directory specified via the out option. The ’utcount;
and ’utprob’ files will be placed in this output directory - both in Perl Storable format. You
can read them by running the P_dvf command.

Insert filters (the format of the pairs is key=value, pairs

are separated by ENTER):

pmse>

This option is called ifilter, because it filters tokens going into the process of statistical
computation. If you found punctuation and spaces in your tokens list and you want to re-
move them, you should ’catch’ them beforehand with a regexp in the ifilter:

pmse> -token=(\p{P}+|\s+)

The key part of the ifilter denotes the place where the filter is applied. Take a look at the
figure 6.2. This figure represents the whole process of statistical computation. You might
have one set of tokens, but you can run different operations within the set for each action.

87

17. PMSE: Tutorial PMSE Manual

You can also specify multiple filters. In interactive mode you are asked twice or more times
for the values. If you just want one single filter, type ENTER and do not enter any further
values.

There is also an ’ofilter’ option available for P_csp in CLI mode only. The ’ofilter’ acts on the
output, which in our case is a hash with pairs token => value. If you do not want to filter
the output of P_csp directly, you can also filter it using P_dvf. This can be useful when you
need to display modified output, but do not wish to change the P_csp’s output at all.

After you complete the ifilter options, an overview of your task is displayed:

we have following values:

in => 'English',

out => 'STDOUT',

delim => qr/(?^:\b)/,

action => ['utcount','utprob'],

ifilter => {'-token' => qr/(?^u:(\p{P}+|\s+))/},

Is it correct? (default value: >yes<):

pmse>

Interactive mode then asks if the given values are correct. If you are not satisfied, type ’no’
and you will be asked which values you want to change. Then you can re-enter each option
again. If all options are OK, just type ENTER and your task will be computed.

17.4 P_gnp Interactive

This tutorial for P_gnp is designed to follow on from the tutorial for P_csp’s interactivemode.
Although these two scripts share some common elements of the architecture, P_gnp pro-
vides more functionality, and supports a wider range of input options.

Basic options, such as in, out, ifilter, process and delimiter are common for both scripts.3

P_gnp also has an option called cluster which is identical to P_csp’s action - in P_gnp de-
termines cluster what should be counted as N-grams (their basic count, frequency and
probability).

Taking a look at the P_csp interactive tutorial in section 17.3 is a good way to learn how
to work with the basic options, and it is assumed the P_csp tutorial has been succesfully
understood, before proceeding with this tutorial.

Options specific for P_gnp can be divided into two groups:

• options related to N-grams creation

1. size – size of the N-gram

2. window – size of context from which are ripped tokens creating the N-gram

3. separator – element delimiting tokens in the N-gram

• options related to computation of (lexical) association measurements

3The delimiter option always defines how to split tokens in the text. Tokenization is the first process in
P_gnp, and is followed by the creation of N-grams. For a graphical explanation of the flow of available actions,
which might be easier to visualize, see figure 11.

88

PMSE Manual 17.4. P_gnp Interactive

1. measure – name of association measure

2. rank – N-grams get ranked according to specified association measure

3. contingency – compute contingency tables with probabilities of tokens and N-
grams

To get detailed information about each of these options, see the chapter 11. Now let’s take
a closer look at the interactive mode. We will use the C2 corpus again. We are looking to
create a list of bigrams and we also want their count, MI-scores, and a list with MI-score
ranked bigrams.

Insert the correct path to the corpus:

pmse> C2

VALUE: >C2<

You have specified the correct, case-sensitive, path to your file, right?

Insert directory or 'STDOUT' (default value: >P_gnp.2243<):

pmse> english_ngrams

VALUE: >english_ngrams<

Output will be stored in the ’english_ngrams’ directory.

Insert regex delimiting tokens (or ENTER to skip):

pmse> \b

VALUE: >\b<

You want to delimit tokens in your text by word boundary.

Insert ngram size (default value: >2<):

pmse>

VALUE: >2<

If you want just bigrams, type ENTER - bigram is the default value.

Insert window size (default value: >2<):

pmse>

VALUE: >2<

Let’s specify the contextual tokens that creates the N-gram.

Insert str separating tokens in ngram (default value: > <):

pmse>

VALUE: > <

The default value is a single whitespace. If you want something more specific, e.g.: YX*XY,
type * and press ENTER.

Do you want to output contingency tables? (default value: >no<):

pmse>

VALUE: >no<

Counting of contingency tables is not particularly fast. Especially when you have a large
corpus, which is why the default is ’no’ here. (Just press ENTER.)

Insert count, prob or freq (you can specify more values separated by space):

pmse> count

VALUE: >['count']<

89

17. PMSE: Tutorial PMSE Manual

You chose a simple count of the N-grams. The other options are prob (probability) and freq

(frequency).

Insert measurements and their parameters

(format of pairs is key=value, pairs are separated by ENTER):

pmse> miscore

pmse>

VALUE: >{'miscore' => undef}<

Parameter is mandatory, when you want to count the MI-score (or other association mea-
sure) for N-grams bigger than 2. If you want trigrams, you have to specify dependencies
among the tokens creating the trigram. So - if you do not need to specify the dependencies,
just type miscore.

Insert measure names for ranks (miscore or tscore)

(you can specify more values separated by space):

pmse> miscore

VALUE: >['miscore']<

If you want the list of bigrams ranked by MI-score, just type miscore.

Insert ifilter(s)

(format of pairs is key=value, pairs are separated by ENTER):

pmse> +token=\w+

pmse>

VALUE: >{'+token' => '\\w+'}<

With this token specification, the programwill be searching for tokens comprised only from
alpha-numeric characters. You can give multiple filters here. When you are satisfied with
your choice, just type ENTER and the next option will be launched.

Insert substitution hooks (possible keys are _ngrams and ngrams_)

(format of pairs is key=value, pairs are separated by ENTER):

pmse>

VALUE: >{}<

This option in CLI mode is called process. You can modify your tokens here; for instance,
you can transform all tokens to lowercase. Your current corpus contains just one sentence,
so you probably do not need to change the tokens. However, if you wished to change all
bigrams (tokens in bigrams) to lowercase, you could do something like:
_ngrams={\A(.+)\s}{lc($1)}xmse

we have following values:

in => 'english',

out => 'english_ngrams',

delim => qr/(?^:\b)/,

size => '2',

window => '2',

separator => ' ',

contingency => '0',

cluster => ['count'],

measure => {'miscore' => undef},

rank => ['miscore'],

ifilter => {'+token' => qr/(?^:\w+)/},

90

PMSE Manual 17.5. Categorization of EMA Texts

process => {},

Is it correct? (default value: >yes<):

pmse>

VALUE: >yes<

An overview of your task is now displayed. Is everything OK? If not, just type the option
that need to be changed and adjust it accordingly. If everything went well, you should see
a directory called english_ngrams with 4 files: count, miscore_rank_1|2 miscore_1|2 and
pmse-env. The pmse-env file is a log, where you can see a record of your task. ’Count’ is
list of N-grams and their counts, miscore_rank_1|2 are ranked N-grams and miscore_1|2 are
unranked N-grams with their associated MI-score values.

If you do not find it particularly user friendly to browse each file separately, you can use
$PMSE_BIN/samples/create_table.pl to make a table:

$ perl $PMSE_BIN/samples/create_table.pl --in 'english_ngrams' --out STDOUT

This stanza will produce a CSV file:

data,count,miscore_1|2,miscore_rank_1|2

Klasterec above,1,2.58496250072116,1

nice city,1,2.58496250072116,3

is a,1,2.58496250072116,2

Ohre is,1,2.58496250072116,4

a nice,1,2.58496250072116,5

above Ohre,1,2.58496250072116,6

Which you can load into R or your favourite spreadsheet editor.

17.5 Categorization of EMA Texts

EMA is an abbreviation for European Medicines Agency 4. EMA organization provides iden-
tical documents in parallel languages. All the documents are distributed in PDF format. In
this example, we will describe how to

• download the documents

• convert them

• perform text categorization for each language

17.5.1 Fetch the Docs

Getting the docs is easy, because the P_daf script has already predefined hook called ema:

P_daf --fetch ema

P_daf will store the documents in \$PMCORP_ROOT/<iso>/original/ema where <iso> is the iso-
639-3 code transformed into a trie structure (see chapter 8). The default target is $PMCORP\

_ROOT which you may change in the INI file (it’s a line beginning with store =). E.g.: in the
current EMA INI file5 you will find line like this:

4http://www.ema.europa.eu/ema/
5Which is placed in $PMSE_ROOT/cfg/daf.d/

91

17. PMSE: Tutorial PMSE Manual

store = "$ENV{PMCORP_ROOT}/" .

x2f_any2path({input => _1or3_639($lang)}) .

'/original/' . $pdf

To change the root, substitute $ENV{PMCORP_ROOT}; with the desired path - e.g.: /home/john/

documents/ema. The resulting path for i.e. English documents thenwill be: /home/john/documents/
ema/e/n/g/original/ema/. (We will use this separate directory in order to keep this example
easy.) For further info about how P_daf works read please the chapter 7. Let’s presume
we have fetched all the multilingual EMA documents successfully into a root directory
/home/john/documents/ema/.

To see how many languages do we have, cd to that mentioned directory and type:

tree -L 2 -i -f * | grep '././.'

You should get a list of directories, which contain the ema docs:

b/u/l

c/e/s

d/a/n

d/e/u

e/l/l

...

Good. Now - all the EMA docs are stored in PDF format. We will call P_dmf and convert
them into plain text files. We just need to find the ’original’ directory for each language.
While the P_dmf needs to get an absolute path of the input argument, we will do:

find `pwd` -name 'original' -exec P_dmf --base \

/home/john/documents/ema --in '{}' \;

This will create corresponding derived directories. Now it is easy to create simply shell
script to execute the categorization:

#!/bin/bash

dirs=(f/i/n f/r/a n/l/d l/i/t

h/u/n s/l/k s/l/v s/w/e

s/p/a d/a/n d/e/u m/l/t

i/t/a e/n/g e/l/l e/s/t

p/o/l p/o/r)

for i in "${dirs[@]}"

do

$PMSE_BIN/samples/categorization/categorization.pl\

--root /home/john/documents/ema/$i --report 3 --cpus 8 \

--vector frequent=’count=200,distance=tanimoto,weight=1,\

preprocess=1’

done

After execution of the script in all /home/john/documents/ema/*/*/*/ directories should appear
a folder called runs which holds the results of the categorization run.

92

Chapter 18

PMSE: Cookbook

18.0.1 Recipes for PMSE

Some recipes for several practical tasks take place in this section. We use the functionality
of PMSE.

18.1 PMSE Crash Course

This section consists of a list of commands related to PMSE environment. Purpose of the
list is to provide a quick reference on the most relevant topics / functions. You will find a
detailed explanation of the commands further in the documentation.

File modifications

P_rer 's{replace}{with}g' file

P_trt --action 'repair_interpunction' --in filename --out STDOUT

P_vls --in textfie --out STDOUT --cut '1 +10% 10% 90%'

Toolchain: decompression of an archive, extraction of n-grams

P_dmf --in $PMCORP_ROOT/e/n/g/original/archive.tgz

P_gnp --in $PMCORP_ROOT/e/n/g/derived/archive.tgz/lvl.last/\

archive.tgz/archive.tar.gz/archive.tar.gz/archive.tar/a.txt\

--ngram 3 3 ' ' --measure 'mi=all' --measure\

'tscore=1|2|3,1 2|3' --rank miscore --cluster count --cluster prob\

--keywords reference_corpus.sbl

$PMSE_BIN/bin/samples/create_table.pl --in P_gnp.out\

--out table.csv

Extracting a wordlist

93

18. PMSE: Cookbook PMSE Manual

P_csp --in $PMCORP_ROOT/e/n/g/derived/archive.tgz/lvl.last/\

archive.tgz/archive.tar.gz/archive.tar.gz/archive.tar/a.txt\

--action utprob --out STDOUT

Categorization toolchain

P_dmf --in $PMCORP_ROOT/c/e/d/

nohup $PMSE_BIN/samples/categorization/categorization.pl --root\

$PMCORP_ROOT/c/e/d/ --report 3 --cpus 2 --vector\

'frequent=count=200,distance=tanimoto,weight=1,preprocess=1'` &

P_dvf --in $PMCORP_ROOT/c/e/d/runs/0/categorized.sbl --otype graphic\

--out g.svg

Various cmds

P_dmp --distance euclid --ngrams may my --out STDOUT

P_cqt --in file --action concordance --query 'e' --out STDOUT

P_dvf --in storable --out STDOUT --sort val

P_ici 'P_rer "s{use encoding (qw)?.utf-?8.}{use utf8}g" [%f]'\

`find -L . -name '*.pm'`

18.2 Sentence Segmentation

Sentence segmentation is a standard NLP problem. It is a special case of text segmenta-
tion, ”sentence segmentation is the problem of dividing a string of written language into its
component sentences.” 1

The goal of the segmentation is to provide reliable detection of sentence boundaries, which
can be a non-trivial task in some languages as these boundaries are denoted by characters
with ambiguous meaning. PMSE uses Perls extended regular expression(s) to find these
sentence boundaries. By default a newline is used as quickly recognizable/parseable sen-
tence delimiter (one sentence per line). As thewhole process is parametrizable, other forms
of reorganization are possible.

Before any segmentation can occur, the text should be well prepared and UTF-8 encoded.
Wrong punctuation and letter casing may lead to confusing results. P_trt (15) can be used
to fix some of these problems beforehand.

1http://en.wikipedia.org/wiki/Text_segmentation

94

PMSE Manual 18.2. Sentence Segmentation

18.2.1 Basic Segmenter

Here is an example of a short Finnish text:

1 – 5- vuotiaat lapset: 2,5 ml oraaliliuosta (puolet 5 ml:n

lusikallisesta) kerran päivässä. 6 – 11- vuotiaat lapset: 5 ml

oraaliliuosta (yksi 5 ml:n lusikallinen) kerran päivässä.

Aikuiset ja yli 12-vuotiaat: 10 ml oraaliliuosta (kaksi

5 ml:n lusikallista) kerran päivässä.

The text is formatted in some random way and our goal is to get one sentence per line:

1 – 5- vuotiaat lapset: ... kerran päivässä.

6 – 11- vuotiaat lapset: ... kerran päivässä.

- Aikuiset ja yli 12-vuotiaat: ... kerran päivässä.

We use P_trt to deformat the original text first, which means, the text will loose all format-
ting information like paragraphs, line breaks etc.

$ P_trt --in file.txt --action deformat --out deformatted_text

Now the text will have a form of one long line. P_rer may be used to break it at the end of
sentences. We need to pass a Perl regular expression with the s operator, because we need
to insert a specific place of the line with line break.

The base of our regexp consists of a terminal punctuation mark: \p{STerm}. STerm is a Sen-
tence Terminal punctuation. Now follows white-space character and upper case letter:

qr{\p{STerm}\s+?\p{Upper}}

The beginning of the second and third sentence would not be matched properly. Second
sentence starts with a number, third with a dash. Thus we have to add:

qr{\p{STerm}\s+?\p{P}?\s*?(\p{Upper}|\d)}

Now we have to integrate the regexp with s{}{} construction. We will use a look ahead
(?=) construction to tell the search engine exactly when to match the STerm character. The
white-space character will be replaced with a new-line character.

s{(\p{STerm})\s+?(?=\p{P}?\s*?(\p{Upper}|\d))}{$1\n}xmsg

Most scripts of the world don’t have cased letters, e.g. Tamil. In such case you may replace
\p{Upper} with \w.

s{(\p{STerm})\s+?(?=\p{P}?\s*?(\w|\d))}{$1\n}xmsg

In some scripts (e.g. in Chinese or Japanese), whitespace does not occur between the termi-
nal punctuationmark and the new sentence. Also, the full stop/period is a special character,
namely U+3002. We can take advantage of this and apply a special rule.

s{(\N{U+3002})}{$1\n}xmsg # very basic

18.2.2 Complex Segmentator

We can have a text with combination of punctuation marks. Or we just want a more robust
segmentator:

s{(\p{STerm})(?(?<=\N{U+3002})(.))}{$1\n}xmsg

95

18. PMSE: Cookbook PMSE Manual

We use condition combined with ”look behind” construction. The meaning is ”match any
character, if the STerm char is U+3002”. This regexp can be extended:

qr{(\p{STerm})(?(?<=\N{U+3002})(.)|\s+?(\p{P}?\s*?(\p{Upper}|\d)))}

It means: ”match any STerm character; if it is the U+3002 character, match any following
character, else the following character(s) must match a combination of white-space, punc-
tuation and upper case letter or digit”.

Now we need to integrate the regexp into s{}{} construction. We will use named backref-
erences to identify captured sequences:

s{

(?<TERM>\p{STerm})

(?(?<=\N{U+3002})(?<SENT>.)|\s+?(?<SENT>\p{P}?\s*?(\p{Upper}|\d)))

}{

$+{TERM}\n$+{SENT}

}xmsg

The environment before the STerm character also affects the segmentation. The full stop
character in latin scripts may be combined with digits (to express ordinality)2 or it is a part
of abbreviations. We don’t want to match the STerm character in this context, thus we will
use ”negative lookbehind” condition in the regexp.

qr{(?<!\d)\p{STerm}}

Will exclude the context of the STerm character standing after a digit. The negative lookbe-
hind construction can be extended with other non-wanted contexts:

qr{(?<!\d)(?<![jJmM][rs]s?)(?<![aA]bbr)\p{STerm}}

You can specify as much abbreviations as you want. The complexity of the s{}{} construc-
tion will grow:

s{

(?<!\d)(?<![jJmM][rs]s?)(?<![aA]bbr)

(?<TERM>\p{STerm})

(?(?<=\N{U+3002})(?<SENT>.)|\s+?(?<SENT>\p{P}?\s*?(\p{Upper}|\d)))

}{

$+{TERM}\n$+{SENT}

}xmsg

18.2.3 Advanced Segmenter for Czech

The regular expression grows with the list of abbreviations you want to apply. In such a
situation, it is handy to use an INI file for P_rer, because you will avoid troubles with the
CLI.

You can find an example of such an INI file below. Please note that the i section is formatted
by newlines to improve readability of this document. The i section must be formatted as

2This occurs in several European languages: in Croatian, Czech, Danish, Estonian, Faroese,
German, Hungarian, Icelandic, Latvian, Norwegian, Polish, Slovak, Slovene, Serbian, Turkish.
http://en.wikipedia.org/wiki/Ordinal_indicator

96

PMSE Manual 18.2. Sentence Segmentation

one line in the real INI file.

[sentence]

i = (?<!\s(č|f|m|n|p|r|s))

i = (?<!\s(aj|ak|ap|Bc|bl|br|čl|dl|ev|fr|hl|ie|it|kr|kř|

mj|ml|ms|ob|pf|pl|sg|sl|tj))

i = (?<!\s(abl|adj|adm|adv|akt|arg|atd|atp|att|bás|BcA|boh|

bot|býv|CSc|csl|dán|dat|děj|

dep|des|dět|DiS|doc|dol|dop|dór|fam|fem|fil|fin|

fot|fut|fyz|gen|hod|hor|hud|hut|imp|ind|inf|Ing|

ión|jap|kpt|lat|lék|les|lid|lit|log|lok|mat|MgA|

Mgr|mjr|mld|mod|náb|nám|něm|než|niz|nom|nor|odd|

odp|opt|pas|plk|pol|por|rak|reg|rkp|rtm|rtn|rum|

rus))

i = (?<!\s(alch|amer|anat|angl|apod|arab|arch|astr|belg|bibl|biol|

brit|bulh|círk|dial|dopr|dosl|ekon|epic|film|form|geol|

geom|germ|gram|hebr|hist|horn|chem|chil|impf|iron|JUDr|

klas|kniž|komp|konj|kuch|metr|MUDr|MVDr|mysl|např|npor|

nrtm|obch|obyč|odst|ojed|part|pers|PhDr|plpf|pomn|popř|

pplk|ppor|prap|práv|prep|prof|rcsl|refl|resp|RNDr|RSDr|

slov))

i = (?<!\s(absol|eufem|event|geogr|hovor|chcsl|instr|kanad|konkr|

námoř|nprap|pejor|pprap|předl|přivl|slang|s\.r\.o))

i = (?<!\s(archit|astrol|genmjr|genplk|genpor|herald|interj|liturg|

meteor|neklas|nstržm|samohl))

i = (?<!\s(etnonym|indoevr|katalán|nesklon|PharmDr))

i = (?<!\s(anglosas))

i = (?<sep>\p{STerm}\p{QMark}?\s?)\s*?(?=\p{QMark}?\s?\p{Upper})

o = $+{sep}\n

m = xmsg

Resulting regexp takes advantage of multiple negative look-behind conditions. Each of
these concatenates abbreviations (in ’OR’ relation) of the same length.

Abbreviations of titles3 and abbreviations of textual units e.g.: par. 6 or par. F would cause
false boundary match.

The INI file may be applied with P_rer like this:

$ P_rer --bulk ssegmentation.ini text.txt

The INI filementioned abovewas created by buildrx_neglookbehind_from_abbrevs4 - a help
script that builds complex INI files from list of abbreviations. Please note that you may use
multiple i and also o sub-sections for P_rer’s bulk file. Also, you may use multiple sections.
P_rer has option --sect for specification of particular section.

Abbreviations are placed in $PMSE_ROOT/cfg/P_rer/abbreviations. You will find there abbre-
viations for all major languages in EU. Resulting INI files are stored in $PMSE_ROOT/cfg/P_rer/

segmenter.

3E.g.: titles stand often before the names in the Czech language, e.g.: PhDr. Jan Novák.
4This script is placed in $PMSE_DEVBINdirectory.

97

18. PMSE: Cookbook PMSE Manual

18.3 Sub Word N-grams Extraction

In this manual, a sub word n-gram is a string of characters smaller than a word. subword
N-grams are capable to describe repetitive patterns of graphemes. Formally, a subword
n-gram is just a substring of the input text.

text

P_gnp

original
subgram list

Storable

P_dvf

modified
subgram list

Storable | Text

visualize

get_subgrams.pl

extract
lower subgrams

Figure 18.1: Schematic overview of subgrams extraction

In other words: it is an n-gram, but the units, fromwhich the subword n-gram consists, are
not word-like tokens, but graphemes. E.g.: the word grapheme consists of these subword
n-grams of size 2:

gr ra ap ph # inside a word

he em me

_g # over the word boundary

e_

The subwordn-grammayoccur in several positions: inside theword, on thewordboundary
and over the word boundary. If the length of the subword n-gram is large, it may consists
of several words. We will mark the white-spaces, in order to identify (cross) boundary

98

PMSE Manual 18.3. Sub Word N-grams Extraction

subword n-gram.

First of all, deformat the text to remove indention and multiple white-spaces.

$ P_trt --in text.txt --action deformat --out deformatted

Now apply P_rer on the deformatted text. We want to mark white-spaces

$ P_rer 's{\s}{_}xmsg' deformatted/repaired

and remove the punctuation:

$ P_rer 's{\p{P}}{}xmsg' deformatted/repaired

Now all the white-spaces transformed into the underscores. (The marker is - as usual -
arbitrary. You can use white-spaces as well.) Now we need to insert underscores in the
beginning and the end of the text. You should insert ”length of the subword n-gram” - 1 of
markers. If the length of the subword n-gram would be 4, you need to insert 3 markers in
the beginning and 3 in the end.

$ P_rer 's{\A(.*)\z}{___$1___}xmsg' deformatted/repaired

The text is prepared for processing. We will use P_gnp:

$ P_gnp --in deformatted/repaired --out subgrams --delimiter '' \

> --cluster count --ngram 4 4 ''

The resulting Storable file will be stored as subgrams/count. The subword n-grams of length 4
allow you to distinguish the minimal (length 2) subword n-grams in all positions. Consider
a subword n-gram ’of’. It can occur as a self standing word (preposition), on the word
boundary, or inside the word:

of # preposition

eof_ # word boundary (thereof)

rofi # inside word (profile)

You can select/filter the subword n-grams with P_dvf (filter option), or set ’ofilter’ option in
P_gnp. We will use P_dvf to get subword n-grams occuring in the boundaries of a word:

$ P_dvf --in subgrams/count --filter '$key =~ m{_}xms' \

> --out subgrams.sbl --otype storable

The resultingfile subgrams.sbl (in Storable format) consists still of subwordn-gramsof length
4. To extract subword n-grams of length 2, use auxiliary script get_subgrams.pl, which is
placed at $PMSE_BIN/samples/get_subgrams.pl.

Idea behind the script is easy: provide a regular expression, which will be applied on each
subword n-gram of the list. You can match only the type of subword n-grams you want to
work with. (The filtering step with P_dvf is not necessary.) The original subword n-gram
will be re-created and its frequency re-counted. The output is the new subword n-gram
list with re-counted frequencies stored in a Storable file. The subword n-gram list may be
printed on STDOUT.

for filtered subgram list:

99

18. PMSE: Cookbook PMSE Manual

./get_subgrams.pl --in subgrams.sbl --regexp '\w(?<sgram>\w{2})\w'

for non-filtered subgram list:

./get_subgrams.pl --in subgrams.sbl \

--regexp '\A[^_](?<sgram>[^_]{2})[^_]\z'}

The mentioned command line example(s) will print in-word n-grams of length 2 (and their
counts) on STDOUT. Note: While generating the original subgram list, it is important to
specify --cluster count option (in P_gnp). Only basic counts of subword n-grams may be
re-counted.

If you want to get the the probality of subword n-grams, specify --action probwhen calling
get_subgrams.pl.

18.4 Probability of Neighbors

This recipe will show how to extract probability of occurrence of tokens on nearest contex-
tual positions. Assume following text5:

He was the third child of eight and the eldest surviving son. Shakespeare produced most of
his known work between 1589 and 1613. Many of his plays were published in editions of
varying quality and accuracy during his lifetime. In 1623, John Heminges and Henry Condell,
two friends and fellow actors of Shakespeare, published the First Folio, a collected edition of
his dramatic works that included all but two of the plays now recognised as Shakespeare’s.
Shakespeare was buried in the chancel of the Holy Trinity Church two days after his death.

Nowwewould like to knowprobability of tokens occurring on the first position after prepo-
sition of, which has 8 occurrences in the sample text. There exist namely these pairs:

of eight

of his

of his

of varying

of Shakespeare

of his

of the

of the

The probability of co-occurrence of eight, is 1/8, prob. of of his is 3/8, of the is 2/8 etc. PMSE
has a script called get_context_probability that is intended exactly for this operation. The
script is placed in $PMSE_DEVBIN. It needs two input files: file storing count of bigrams and file
storing probability of unigrams (generated from the same source as the file with bigrams).
Both input files should be generated with P_gnp, see chapter 11. Output is a data-structure
where each unigram has a predecessor (marked as º+1) and successor (marked as º-1) po-
sition. Count of tokens on each position may be also set (default is 5) as well as output limit
of ”root” unigrams (default is 100,000).

of => { # root unigram

5It is a sample of an article about William Shakespeare published on Wikipedia:
http://en.wikipedia.org/wiki/Shakespeare

100

PMSE Manual 18.5. Co-occurrences

P => 0.0860215053763441, # probability of root unigram

º+1 => { # predecessors

Many => { P => 0.125 },

actors => { P => 0.125 },

child => { P => 0.125 },

edition => { P => 0.125 },

most => { P => 0.125 },

},

º-1 => { # successors

Shakespeare => { P => 0.125 },

eight => { P => 0.125 },

his => { P => 0.375 },

the => { P => 0.25 },

varying => { P => 0.125 },

},

}

Help for script get_context_probability may be invoked as in other PMSE scripts:

$ perl get_context_probability -?

Output (data structure similar as listed above) is stored in Storable format, it is PMSE::Vi-
sualize::Neighbors object and has some predefined method of conversion, currently to text
and YAML. You can do that with P_dvf, see chapter: 10.

18.5 Co-occurrences

Our concept of co-occurrences is similar to kocos.pl in Text::NSP6:

Co-occurrences are the words which occur together in the same context. All
wordswhich co-occurwith a given target word are called its co-occurrences. The
concept of 2nd order co-occurrences is explained in the paper Automatic word
Sense Discrimination [Schutze98]. According to this paper, the words which co-
occur with the co-occurring words of a target word are called as the 2nd order
co-occurrences of that word.

The words which co-occur with the 2nd order co-occurring words belong to 3rd order and
so on.

18.5.1 What is a Co-occurrence in Linguistics?

The linguistic termof co-occurrence is related to the termof collocation. Generally speaking,
collocation and also co-occurrence provide information about context of a word, or - by
collocation - about multi-word units. The strength of the collocation is derived from the
probabilities of occurrence its components. The measures of collocational strength take
into account the mutual position of the lexical units and the separate occurrence of the
units in the corpus.

6Available from http://search.cpan.org/dist/Text-NSP/lib/Text/NSP.pm

101

18. PMSE: Cookbook PMSE Manual

The concept of a co-occurrence is different. It describes the relation of a word to other
lexical units but without a dependency on absolute position of the word in the text.

If we have e.g. following sentences from which we want to extract basic bigrams (n-grams
of size 2 from window 2):

I like Chinese language. It is a rich language.

I like

like Chinese

Chinese language

language It

It is

is a

a rich

rich language

Then co-occurring words for Chinese are:

Chinese target

like 1st order

language 1st order

rich 2nd order

There exists dependency chain among Chinese - language - rich. Note that Chinese and rich
stay far from each other in the text.

18.5.2 Extract Co-occurrences

Then we will use P_cqt to extract the co-occurrences and then we will visualize them with
P_dvf.

We need to extract bigrams first, thuswewill use P_gnp. Let the the input file be ’source.txt’:

$ P_gnp --in source.txt --cluster count --out bigrams --ifilter '-token=\s+'

Now, do some filtering7 and store the bigrams as non-PMSE object:

$ P_dvf --in bigrams/count --out bigrams.sbl --otype storable \

> --filter '$value < 100 || $key =~ m\{\p{P}}xms'

Finally, extract the co-occurrences with P_cop:

$ P_cop --in bigrams.sbl --level 2 --target 'literal=Chinese' --out coocs

And display the result with P_dvf:

$ P_dvf --in coocs/cooccurrences --otype graphic --out cooc

7The filtering step is necessary, if you want to do a qualitative inspection of interesting relations among
words, you will need to filter out the bigrams containing punctuation and probably grammatical words. Also,
you will need to filter out bigrams with low frequencies, because they would cause the graphic output to be
poorly arranged.

102

PMSE Manual 18.5. Co-occurrences

P_dvf should create a file called cooc.svg, which should look like picture 18.5.2.

Figure 18.2: The Canterbury Tales, and Other Poems by Geoffrey Chaucer - grammatical
co-occurrences for ’say’ (filtered input)

The target (say) ismarkedwithwhite color. Co-occurrences of first order aremarked by red,
co-occurrences of second order are marked by orrange colour. The word have is connected
with two words, because it co-occurs with both of them.

18.5.3 Convert Text::NSP Bigrams to PMSE

Text::NSP use following format to store bigrams:

11

line<>of<>2 3 2

of<>text<>2 2 2

second<>line<>1 1 3

line<>and<>1 3 1

and<>a<>1 1 1

a<>third<>1 1 1

first<>line<>1 1 3

third<>line<>1 1 3

text<>second<>1 1 1

This list can be stored e.g. in a file called ’nsp.txt’. We need to get a format which we can
load in P_dvf. Thus we will use P_rer to convert the NSP list:

P_rer 's{^(.+?)<>(.+?)<>(\d+?)\s.+?$}{$1<>$2\t$3}xmsg' nsp.txt

We get a list like this one:

11

line<>of 2

of<>text 2

second<>line 1

line<>and 1

and<>a 1

103

18. PMSE: Cookbook PMSE Manual

a<>third 1

first<>line 1

third<>line 1

text<>second 1

The last thing we need to remove is the total count of bigrams at the beginning of the file:

P_rer 's{^\d+?\n}{}xms' nsp.txt

Now we can load the list into P_dvf:

$ P_dvf --in nsp.txt --itype text --otype storable

The result is a histogram-like structure in the Storable format.

18.6 Text Categorization

The categorization of texts (TextCat) is a use-case for PMSE. It was intended as a simply
layer of glue connecting parts of the environment first. However, it has developed in the
regular procedure which integrates several parts of PMSE as well as several modules in the
libraries.

Great attention was paid for efficiency as well for modularity of the system. 8

18.6.1 Brief Description of the Procedure

First of all, let us consider a directory structure as is described in the section 2.2. The first
step is to convert the source files into a plain text. Consider a categorization of Czech text.

The path to the texts will be: $PMCORP_ROOT/c/e/s/original. The conversion is a task for
P_dmf:9

$ P_dmf --in /data/library/c/e/s/original

When we have created the derived directory and the text files, we can run the categoriza-
tion.

$ $PMSE_BIN/samples/categorization/categorization.pl \

> --root $PMCORP_ROOT/c/e/s --report 3 --cpus 2 \

> --vector frequent = 'count=200,distance=tanimoto,weight=1,preprocess=1'

If the categorization process was completed successfully, we should see directory called
runs. In this directory are stored runs of the TextCat. Each run has own directory called
by number, first run of categorization will be stored in directory 0. Input options for each
run are reported in categorization.env file, which is included in all run directories. You can
display the file with:

$ P_dvf --in categorization.env

Now go into the runs/0 directory and list all files. You should see a file called categorized.sbl.
Load this file into P_dvf to visualize it. This file contains the result of categorization run.

8Instructions how to write a TextCat module are placed in the PMLS manual.
9You have to use the absolute path.

104

PMSE Manual 18.6. Text Categorization

It is a Storable file containing a binary tree: the structure of clusters based on the lexical
proximity of the input texts.

Command below will create a file g.svg in the SVG format.

$ P_dvf --in categorized.sbl --otype graphic --out g.svg

To get detailed info about the output data structure, see section 18.7.3.

18.6.2 Categorization.pl - Interface for TextCat

The script categorization.pl is rather a wrapper of various PMSE functions than a regular
PMSE script. Therefore it is placed in $PMSE_BIN/samples/categorization directory and does
not have a regular PMSE name. The function of the script is to provide a simply interface
for the process of textual categorization.

The script has several options:

categorization.pl Categorize texts

SYNOPSIS

categorization.pl OPTIONS

OPTIONS

–analyze

Count Entropy and Purity measure for the clusters of the graph.

This assumes you know the categories of texts BEFORE categorization. To get correct
results of cluster evaluation, you have to name your input texts correctly. This func-
tion is designed for text-names like:

perl-1.txt

Where ’perl’ is a name of the category. Only this string will be taken as a category
name. The categories are recognized automatically from the names of the texts. The
dash ’-’ and ’.txt’ suffix are mandatory.

–cpus <n>

Number of threads that should be using during categorizatino process. 0 means no
fork.

–filter <hash>

Defines filtering tokens/files. Default no filtering.

files=pareto

tokens=pareto

–report <level>

Reporting level used in PMSE scripts. Levels could be usually 1, 2 or 3.

105

18. PMSE: Cookbook PMSE Manual

–root <directory>

Directory is of the form

*/./././

and it contains derived directory. Inside there is a file structure with .txt files repre-
senting corpora. This structure could be createdby P_dmf. By default /data/library/m/u/l/.

–vector <hash>

Defines categorization criteria. For most common frequent choice we have following
parameters:

count number of frequent ngrams

distance name of distance measure

preprocess what should be considered: 1 for unigrams etc.

We have also few universal parameters:

weight importance of this criterion

Default frequent=’count=200,weight=1,distance=tanimoto,preprocess=1’.

Example with 2dimensional vector:

-vector frequent='weight=0.8,count=200,preprocess=1,\

distance=tanimoto'

-vector slength='weight=0.2,...'

Note: combinations of more --vector criteria is not implemented.

18.7 PMSE Visualization

Main visualization tool of the PMSE framework is the P_dvf script. However, the process
of visualization begins earlier, when the particular data-structure is being created. Each
data-structure created in the PMSE framework is an objectwhich may have a specific set of
properties or methods.

18.7.1 Objects In PMSE

PMSE objects have pre-defined methods for visualization and format conversion. 10 This is
handy, because the input data structure may be loaded in the P_dvf script and there will be
the data structure automatically converted or visualized according to predefined methods
(and input options).

The objects share several common visualizationmethods, but even so - the difference in the
structures affects the attributes and options of these methods. This section of cookbook is
intended to provide detailed info about the objects and their methods specifics - visualizing
options.

10In the current version, PMSE stores objects information both about visualization and conversion to other
formats. This may be changed in the future.

106

PMSE Manual 18.7. PMSE Visualization

18.7.2 Input from the Outer Space

The visualization of data created by other applications is possible. PMSE will load in the
data structure and will create a basic object with five basic methods of visualization:

• printed data structure P_dvf –otype pdump

• storable P_dvf –otype storable

• text P_dvf (text is default otype option)

• yaml P_dvf –otype yaml

• SVG graphic P_dvf –otype graphic

These methods are default for all PMSE objects, however - the complexity of the graphical
output is slightly different. The basic PMSE object is a simply hashwith a data sectionwhich
is printed out in few possible formats.

18.7.3 Binary Tree Visualization

Binary tree is a common data structure; in case of PMSE, it is formed by categorization
process - see section 18.6 for details. The output structure consists of clusters - groups of
texts which represent the similarity among texts.

PMSE uses the GraphViz tool to visualize this structure. Now consider a simple example.
We performed a categorization of 8 texts. The input data stored in original directory was
like this:

original/

--text/

--Dinoland-0.txt

--Dinoland-1.txt

--MarkStone-2.txt

--MarkStone-3.txt

--PerryRhodan-4.txt

--PerryRhodan-5.txt

--RenDhark-6.txt

--RenDhark-7.txt

Afterwe ran categorization.pl script, we should see a directory runs/<number of run>. In this
directory should be place file called categorized.sbl. We can display it simply as:

$ P_dvf --in categorized.sbl

What shoud give us something like:

{

0 "text/PerryRhodan-5.txt/lvl.last/PerryRhodan-5.txt/PerryRhodan-5.txt",

1 "text/PerryRhodan-5.txt/lvl.last/MarkStone-3.txt/MarkStone-3.txt",

2 "text/PerryRhodan-5.txt/lvl.last/MarkStone-2.txt/MarkStone-2.txt",

3 "text/PerryRhodan-5.txt/lvl.last/RenDhark-6.txt/RenDhark-6.txt",

4 "text/PerryRhodan-5.txt/lvl.last/Dinoland-0.txt/Dinoland-0.txt",

5 "text/PerryRhodan-5.txt/lvl.last/PerryRhodan-4.txt/PerryRhodan-4.txt",

6 "text/PerryRhodan-5.txt/lvl.last/Dinoland-1.txt/Dinoland-1.txt",

7 "text/PerryRhodan-5.txt/lvl.last/RenDhark-7.txt/RenDhark-7.txt",

107

18. PMSE: Cookbook PMSE Manual

8 [

[0] 6,

[1] 4

],

9 [

[0] 7,

[1] 3

],

10 [

[0] 2,

[1] 1

],

11 [

[0] 5,

[1] 0

],

12 [

[0] 11,

[1] 9

],

13 [

[0] 12,

[1] 10

],

14 [

[0] 13,

[1] 8

]

}

The numbers in the first column express the clusters. The lowest clusters 0 - 7 consist of
”leafs” - single texts which are combined in higher clusters until the last super-cluster (root)
- 14 is reached. The command for forming of the graphical output is:11

$ P_dvf --in categorized.sbl --otype graphic --out g.svg

Ii will give us a graph like:

The look of the graph is specified in PMSE::Visualize::BinaryTree module. There exist two
additional features of the graph:

First is the analysis of the cluster(s). If the --analyze option in categorization.pl is in use,
values for entropy and purity measure will be counted. These measures are used to eval-
uate the ”quality” of the cluster(s) - both measures take in account the ratio of categories
contained in the cluster. The ideal value of purity is 1, entropy - on the opposite - has ideal
value 0. You have to know the distribution of texts in given categories before you start the
categorization.

11The SVG output format is available only from Perl version 5.14.2 and higher. If the user runs
lower version of Perl, the output will be stored in a dot format. For explanation of dot see e.g.:
http://en.wikipedia.org/wiki/DOT_%28graph_description_language%29

108

PMSE Manual 18.8. Visualization of Contingency Tables

14

13

8

12

10

11

9

PerryRhodan-4.txt

PerryRhodan-5.txt

MarkStone-2.txt

MarkStone-3.txt

RenDhark-7.txt

RenDhark-6.txt

Dinoland-1.txt

Dinoland-0.txt

Figure 18.3: Example of clusters visualized by GraphViz

In order to count entropy and purity, it is necessary to use appropriate names of the input
texts. The name of text should contain number of category to which the text belongs, a
hyphen, number and the .txt suffix. The example from this section shows a group of 8
texts divided into 4 categories (4 science-fiction series). Each category consists of 2 (pulp-
booklet) novellas belonging to a specific series.

Second the box-like nodes which contain the name of text should contain a link (a path to
the file in your file system) aiming on the file. If you open the SVG graphic in aweb browser,
the name of the text should be clickable. You can easily inspect the content of the text files.

18.8 Visualization of Contingency Tables

Contingency table is another type of output created by P_gnp. Contingency tables in PMSE
store information about the n-grams generated from given input file. The table stores in-
formation about frequency of occurrence of tokens (and their possible combinations) from
which is the n-gram comprised. In the case we process n-grams with n bigger than 2, the
tables are n-dimensional.

$ P_gnp --in <some_text> --contingency --out cont --ifilter '+token=\w+'

P_gnp stores the contingency table as a Storable file.

18.8.1 Interpretation of the Data Structure

Consider we have following sentence: I am home here. If we generate bigrams from this
sentence, we will get a hash like this:

my $contingency = {

109

18. PMSE: Cookbook PMSE Manual

'I am' => [1, 0, 0, 2],

'am home' => [1, 0, 0, 2],

'home here' => [1, 0, 0, 2],

};

The left side (keys of the hash) of the table holds the particular n-gram. The right side (values
of the hash) contains an array filled with values of occurrences of combinations of tokens
from the n-gram.

The combination of tokens is encoded as a binary number in the position of the value in
the array. For example the first row of the table is:

'I am' => [1, 0, 0, 2],

The first value from the array has in Perl index 0. Decimal 0 is in binary also 0 and 0 denotes
the true existence of the token in the n-gram. The first value in the array therefore denotes,
that the the combination I am occurs exactly once in the input text.12

The second number in the array: it has index 1. We can interpret it as 0113 in the binary
form. This denotes combination of I with any other possible token (except am) from the
input text - we see, that there is no such combination in the input text, therefore it has
value 0.

The third number in the array has index 2 - in binary form 10. This combination denotes
combination of any token (exceptI) and am. We see no non-I am combination exists in the
input text.

The fourth number has index 3 - in the binary form 11. This means any combination of no-I
and non-am in the input text. We see we have two such combinations: am home and home
here, therefore the value is 2.

This encryption of combinations is universal for n-grams of any length.

18.8.2 Methods of Visualization

in P_dvf:

AsText / CSV The basicmethod is as a plain text. No output format specification is needed,
because the plain text is a default output format of P_dvf. In the case of contingency tables,
the output format is rather a CSV, because it is more practical.

$ P_dvf --in cont/contingency --out cont.csv

The output will look like the following:

,home,not home

am,1,0

not am,0,2

,here,not here

home,1,0

not home,0,2

12The binary 0 could be interpreted as 00 - TOKEN TOKEN.
13TOKEN - NONTOKEN. NONTOKEN means, that we assume any other token except the real one existing on

given position.

110

PMSE Manual 18.9. N-grams Histogram Visualization

,am,not am

I,1,0

not I,0,2

Now you can load cont.csv e.g. into a spread-sheet editor or R.

SVGGraphic To visualize a contingency table, we use Rwith the combination of vcd pack-
age.14 Weuse amosaic plot (in SVG format) for the visualization, however this functionality
is a little bit experimental for now. The command to get the graphic is:

$ P_dvf --in cont.sbl --out cont.svg --otype graphic

The readability of the graph depends strongly on the count of rows in the contingency table.
If there is a lot of them, the graphwon’t be readable. Therefore youmay need to filter them.

The filtering is specified via a Perl code - you can specify the keys (n-grams) and values (the
real frequency of occurrence of the given n-gram) you want to remove from the table.

$ P_dvf --in cont.sbl --out cont.svg --otype graphic --filter \

> '$key !~ m{\bI\b}'

The picture 18.8.2 shows threemost frequent bigrams extracted fromChaucer’s Canterbury
Tales. Each colored box of a row shows the proportion of frequency of occurrence for given
combination of tokens.

18.8.3 Distance Visualization

The input data structure is a nested hash consisting of a name of given distancemeasure(s),
info about normalization, compared n-grams and the value(s) of given distancemeasure(s).

The basic methods of visualization are spreadsheet and text.

$ P_dvf --in dir/distance --otype spreadsheet --out distance.csv

18.8.4 FileStat Visualization

The input data structure is a simply hash with statistical information related to a specified
text. The basic methods of visualization are spreadsheet and text.

$ P_dvf --in dir/overview --otype spreadsheet --out overview.csv

18.9 N-grams Histogram Visualization

Consider a following data structure:

...

the<>language 3

language<>is 3

14http://cran.r-project.org/web/packages/vcd/index.html

111

18. PMSE: Cookbook PMSE Manual

Figure 18.4: The Canterbury Tales, and Other Poems by Geoffrey Chaucer - three most fre-
quent bigrams

to<>use 3

agree<>on 3

programming<>in 3

ten<>percent 2

one<>can 2

which<>ten 2

...

These are n-grams generated by P_gnp, e.g.:

$ P_gnp --in text.txt --cluster count --ngram 2 2 '<>' \

> --ifilter '+token=\w+' --out try

And visualized with P_dvf:

112

PMSE Manual 18.9. N-grams Histogram Visualization

$ P_dvf --in try/prob --sort '+val'

P_dvf offers multiple output formats, ’graphic’ among others. Word list or a N-gram list has
a predefined graphic format - a word cloud. Thus when you give following command:15

$ P_dvf --in try/count --otype graphic --out graph

You will get an svg file called ’graph.svg’, similar to this:

18.9.1 Histogram Visualization Commands

Histogram has several specific methods - options:

• bulk: building of more complex regexp for filtering, e.g.: stop-lists

• filter: filter keys or values

• fmt: specify key - value position on the line

• limit: limit the number of lines with output

• sort: sort keys or values

Exampples of commands for P_dvf related to histogram:

P_dvf --otype pdump # printed data

structure

P_dvf --sort <sort_order> --fmt <fmt> # text

P_dvf --sort <sort_order> --otype yaml # yaml

P_dvf --filter <code>

P_dvf --otype graphic # svg

P_dvf --bulk <ini file>

Here follows short description of histogram-specific options:

–bulk <file>

The bulk specifies filtering options. It is handy for specifying of stop-lists.

Define a bulk file with code that will be applied during filtering. We can achieve multiple
filtering options with this. There must be defined at least one [section] called ’eval’ and
hook called ’filter’:

[eval]

filter = <<END

<code>

<code>

END

We can use heredoc style to define multiple code blocks. To specify the code, look at the
option --filter.

–filter <code>

15This is an early implementation only. If you want to use the ’graphic’ output format, you have to generate
the input file with P_gnp –object option.

113

18. PMSE: Cookbook PMSE Manual

Figure 18.5: The Canterbury Tales, and Other Poems by Geoffrey Chauce: most frequent
bigrams

Filter is an optional choice independent on the output format.

Filtering is done via perl code. As all output data is stored in a hash (list of ’key-value’ pairs),
the user can define filtering expressions like:

$key =~ <regex>

114

PMSE Manual 18.10. Macros

$value > <value>

Data which matches the regex, or pass the comparsion, are deleted.

–fmt <template>

Fmt is optional - available only for text (default) output format.

Format string to define the output. The variables %k and %v denote positions of the current
key and value. If not given, the default is %k \t %v\n.

–limit <number>

Limit is optional - available only for text (default) output format. Limit the number of output
lines to C<num> (integer). The default is 0, in which case the output is unlimited. If this
parameter is defined just the first C<num> lines are printed.

–sort <sort_order>

Sort is available for otype(s):

as_printed_data_structure

as_yaml

as_text (default)

Sort is optional. Valid values for <type> are:

+key sort by key in ascending order (default)

-key sort by key in descending order (default)

+val sort by value in ascending order

-val sort by value in descending order

18.10 Macros

The idea of a PMSE macro is to provide a predefined sequence (chain) of PMSE commands
with already specified input parameters. Macros are often built using shell scripts, but
basically every formalism allowing you to chain shell commandswill do. Macros are handy
to build larger building blocks of functionality from lower level commands.

18.10.1 MAK_1s1l

Consider the application of sentence segmentation for different languages. We describe in
the section 18.2, how towrite a sentence segmentator. In the core of this functionality, P_rer
is used with language-specific regular expressions. In such case it would be necessary to
have different bulk files for files in different languages.

The example below shows a simple macro called MAK_1s1l which is basically a simple if -
elsif branch:

#!/bin/sh

#

PMSE MAKRO: execute sentence segmentation for a file with

language specific segmentator. First, the script creates

a copy of the input file with 'ss-' prefix.

The copy is segmented in the next step.

#

115

18. PMSE: Cookbook PMSE Manual

FILE=$1 # input 1

LANGUAGE=$2 # input 2

cp $FILE "ss-$FILE"

lang CES

if ["$LANGUAGE" = "ces"] ; then

P_rer 's{(?<!angl)(?<!\smj)(?<!\sIng)(?<!\sBc)(?<!\sbelg)

(?<!\sbiol)(?<!\sč)(?<!\sčl)(?<!dán)(?<!\sfyz)

(?<!\sgenmjr)(?<!\sgenpor)(?<!Ing)(?<!\sJUDr)(?<!\smat)

(?<!\sMgA)(?<!\sMgr)(?<!\smjr)(?<!\sml)(?<!\sMUDr)

(?<!\sMVDr)(?<!\snapř)(?<!\snpor)(?<!\snprap)

(?<!\sodst)(?<!písm)(?<!\ss)(?<!\sr)(?<!\sspol)

(?<!\sPharmDr)(?<!\sPhDr)(?<!\splk)(?<!\spopř)

(?<!\spplk)(?<!\sppor)(?<!\spprap)(?<!\sprap)

(?<!\sRNDr)(?<!\sRSDr)(?<!\sThDr)(?<!\stzv)(?<!\sjm)

(?<!\svl\.jm)(?<!\szkr)(?<!\szn)(?<!\szvl)

(?<STERM>\p{STerm}\p{QMark}?)\s+?(?=\p{P}?\s*?(\p{Upper}|\d))}

{$+{STERM}\n}xmsg' "ss-$FILE"

lang ENG

elif ["$LANGUAGE" = "deu"] ; then

P_rer 's{(?<!\sAttn)(?<!\sc\.c)(?<!\scf)(?<!\se\.g)(?<!\senc)

(?<!\sencl)(?<!\sref)(?<!\sf\.o\.a)(?<!\sw)(?<!\si\.e)

(?<!\sinc)(?<!\sYrs)(?<!\sadmin)(?<!\sh\.q)

(?<!\sMan\.Dir)(?<!\sa\.o\.b)(?<!\sassoc)(?<!\sdept)

(?<!\srep)(?<!\sest)(?<!\sexec)(?<!\sext)(?<!\sXer)

(?<STERM>\p{STerm}\p{QMark}?)\s+?(?=\p{P}?\s*?(\p{Upper}|\d))}

{$+{STERM}\n}xmsg' "ss-$FILE"

lang DEU

elif ["$LANGUAGE" = "eng"] ; then

P_rer 's{(?<!\sapl)(?<!\sd)(?<!\sDipl)(?<!\sDr)(?<!\sG)

(?<!\sd\.h)(?<!\sevtl)(?<!\sgepfl)(?<!\si\.H\.v)

(?<!\ssw)(?<!\su\.v\.a)(?<!\sV\.i\.R)(?<!\sz\.B)

(?<!\sMon)(?<!\stgl)(?<!\sProf)(?<!\su\.A\.w\.g)

(?<!\su\.U)(?<!\sv\.a)(?<!\sz\.d\.I)(?<!\sz\.I)

(?<!\sz\.I\.I)

(?<STERM>\p{STerm}\p{QMark}?)\s+?(?=\p{P}?\s*?(\p{Upper}|\d))}

{$+{STERM}\n}xmsg' "ss-$FILE"

else

116

PMSE Manual 18.10. Macros

echo "Language $LANGUAGE is not known!"

fi

$1 and $2 are the input variables - they contain a value specified as an input argument on
CLI. The first value is a filename and the second - an iso-639-3 code - the language specifi-
cation. The second variable is matched with predefined strings (also iso codes).

The script will make a copy of the input file (new file with ss- prefix will be created). Which
will be modified afterwards.

If the specific code matches, the appropriate segmentator is used.16

If the second input parameter doesn’t match any predefined code, the script will print a
warning.

18.10.2 Further extensions

It may be useful to integrate some text processing functions in the macro. The name of the
macro is MAK_1s1l - one sentence per one line. However, the input text could be wrong
formatted, it could contain e.g. multiple empty lines or headlines; the resulting file could
be affected as well.

P_trt can be used to remove headlines (titles) from the text and to remove all formatting
characters (mainly line breaks). Following command should replace the copy cp $FILE "ss-

$FILE" command:

P_trt --action remove_headline --in $FILE --out STDOUT | \

P_trt --in STDIN --action deformat --out STDOUT > "ss-$FILE"

Here is a little example17 of what will happen with the input text. Let the original text be18:

Language

Language is the human capacity for acquiring and using complex

systems of communication, and a language is any specific example

of such a system. The scientific study of <br1>

language is called linguistics.

Estimates of the number of languages <br2>

<br3>

in the world vary between 6,000 and 7,000.

After the first P_trt command the text should look like:

Language is the human capacity for acquiring and using complex

systems of communication, and a language is any specific example

of such a system. The scientific study of

language is called linguistics.

16The segmentators above are only examples - they contain abbreviations which may cause a problem in the
segmentation. The enumeration of the abbreviations is definitely not final.

17From http://en.wikipedia.org/wiki/Language
18The
 signs denotes line breaks. They are not a part of the original text - they are used to visualize the

problem. We want to remove breaks 1, 2 and 3, because they corrupt the sentences

117

18. PMSE: Cookbook PMSE Manual

Estimates of the number of languages in the world vary between

6,000 and 7,000.

The second P_trt commandwill remove all other formatting, thus the text will have a form
of:

Language is the human capacity for acquiring and using complex

systems of communication, and a language is any specific example

of such a system. The scientific study of language is called

linguistics. Estimates of the number of languages in the world

vary between 6,000 and 7,000.

The final (segmented) text will look like:

Language is the human capacity for acquiring and using complex

systems of communication, and a language is any specific example

of such a system.

The scientific study of language is called

linguistics.

Estimates of the number of languages in the world

vary between 6,000 and 7,000.

n

118

Index

–iact, 85

abbreviations, 97

archive decompression, 93

association measures, 57

binary tree, 105

categorization pl

OPTIONS, 105

SYNOPSIS, 105

categorization.pl, 105, 107

clustering, 107

entropy, 108

purity, 108

co-occurrences, 19, 100, 101

collocation, 101

command iteration, 67

contingency tables, 57

cookbook, 93

corpus, 15

crash course, 93

data acquisition, 29

data library, 7

deactivate

PMSE, 1

deinstall, 1

PMSE, 1

deinstallation, 1

delete

PMSE, 1

delimiter, 87

directory structure, 6

distance, 111

measures, 111

normalization, 111

distance measures, 43

downgrading, 1

environment variables, 65

European Medicines Agency, 91

file modifications, 93
file statistics, 11
format conversion, 35, 51

get_context_probability, 100
get_subgrams, 99
GraphViz, 19, 107

help, 9
histogram, 111

filtering, 114
output limit, 115
sorting, 115

information
installation, 1

INI file, 29, 97
install, 1
installation, 1
interactive, 85, 88
ISO 639-3, 117

key-words, 57

macros, 7, 115
Mak1s1l, 115
MI-score, 57, 90
mosaic plot, 111
multilingual library, 36

n-gram, 57
n-grams, 93, 109, 112
negative lookbehind, 96

options, 9

P_bsd, 7, 11
P_cct, 15
P_cop, 7, 19, 102
P_csp, 7, 85
P_daf, 29, 91
P_dmf, 8, 35, 92
P_dmp, 7, 43

119

INDEX PMSE Manual

P_dvf, 8, 51, 106
P_fdt, 8
P_gnp, 8, 57, 88, 99
P_help, 8, 65
P_ici, 8, 67
P_rer, 8, 73, 95, 97, 99
P_trt, 8, 77, 94, 117
P_vls, 8, 81
parallel, 5
parallelisation, 67
PMSE, 5

deactivate, 1
delete, 1

PMSE Cookbook, 93
PMSE objects, 51, 106
PMSE root, 7
PMSE Tutorial, 85
PMTS (tagset), 15
probability of neighbors, 100

rank, 57
regexp replacement, 73
regular expression, 73
remove

PMSE, 1
runs, 104

scripting environment, 5
segmenter, 95
segmenter for Czech, 96
sentence segmentation, 94, 115
STerm, 96
sub word n-grams, 98
SVG, 105, 109, 113

T-score, 57
tagset, 15
tagset conversion, 15
text categorization, 91, 94, 104
text formatting, 77
Text::NSP, 101
tokenization, 88
tokenizer, 87
trie, 91
tutorial, 85

UNIX, 5
upgrading, 1

visualization, 51, 106
binary tree, 107
contingency tables, 109

distances, 111
file statistics, 111
histogram, 111

Wikimedia processing, 35
wordlist, 93

120

PMSE Manual

End of PMSE Manual (as of October 12, 2025)

121

	Deployment and Configuration
	Deinstalling of a PM Project
	Upgrade and Downgrade
	By Installation
	By Explicit Switch
	By Implicit Switch

	About the PetaMem Scripting Environment
	Conceptual Overview
	Paths and Directory Structure
	PMSE - Root
	PMSE - Binary
	Data - Library Structure

	PMSE Toolset Overview

	P_bsd: Basic Statistical Data
	Reference
	Examples

	P_cct: Corpus Conversion Tool
	Reference
	Examples

	P_cop: Co-occurrence Processor
	Reference
	Examples

	P_csp: Comprehensive Statistics Processor
	Reference
	Examples
	Q&A

	P_daf: Data Acquisition Framework
	Reference
	How to Write an INI File
	Private Data and Personal INI
	Extended INI File
	Hooks
	Examples

	P_dmf: Data Mining Framework
	Reference
	File Structure
	Input Formats
	Dependencies
	Input Texts, Encoding
	Wikimedia Processing
	Wikipedia Configuration File
	Further Processing

	Examples

	P_dmp: Distance Measures Processor
	Reference
	Examples
	Q&A
	Distance Functions Characteristics

	P_dvf: Data Visualization Framework
	Reference
	Examples

	P_gnp: Generic N-grams Processor
	Reference
	Examples
	Q&A

	P_help: PMSE Helper
	Reference
	Examples

	P_ici: Intelligent Command Iterator
	Reference
	Examples

	P_rer: Regular Expression Replacer
	Reference
	Examples

	P_trt: Text Repair Tool
	Reference
	Examples

	P_vls: Variable Length Splitter
	Reference
	Examples

	PMSE: Tutorial
	Learning by Example
	Corpora
	C1
	C2
	C3

	P_csp Interactive
	Basic Usage of –iact

	P_gnp Interactive
	Categorization of EMA Texts
	Fetch the Docs

	PMSE: Cookbook
	Recipes for PMSE
	PMSE Crash Course
	Sentence Segmentation
	Basic Segmenter
	Complex Segmentator
	Advanced Segmenter for Czech

	Sub Word N-grams Extraction
	Probability of Neighbors
	Co-occurrences
	What is a Co-occurrence in Linguistics?
	Extract Co-occurrences
	Convert Text::NSP Bigrams to PMSE

	Text Categorization
	Brief Description of the Procedure
	Categorization.pl - Interface for TextCat

	PMSE Visualization
	Objects In PMSE
	Input from the Outer Space
	Binary Tree Visualization

	Visualization of Contingency Tables
	Interpretation of the Data Structure
	Methods of Visualization
	Distance Visualization
	FileStat Visualization

	N-grams Histogram Visualization
	Histogram Visualization Commands

	Macros
	MAK_1s1l
	Further extensions

	Index

